Loading…

RNA interference is an antiviral defence mechanism in Caenorhabditis elegans

RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing mechanism that is well defined genetically in Caenorhabditis elegans. RNAi has been postulated to function as an adaptive antiviral immune mechanism in the worm, but there is no experimental...

Full description

Saved in:
Bibliographic Details
Published in:Nature 2005-08, Vol.436 (7053), p.1044-1047
Main Authors: Chow, Marie, Machaca, Khaled, Wilkins, Courtney, Dishongh, Ryan, Moore, Steve C, Whitt, Michael A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing mechanism that is well defined genetically in Caenorhabditis elegans. RNAi has been postulated to function as an adaptive antiviral immune mechanism in the worm, but there is no experimental evidence for this. Part of the limitation is that there are no known natural viral pathogens of C. elegans. Here we describe an infection model in C. elegans using the mammalian pathogen vesicular stomatitis virus (VSV) to study the role of RNAi in antiviral immunity. VSV infection is potentiated in cells derived from RNAi-defective worm mutants (rde-1; rde-4), leading to the production of infectious progeny virus, and is inhibited in mutants with an enhanced RNAi response (rrf-3; eri-1). Because the RNAi response occurs in the absence of exogenously added VSV small interfering RNAs, these results show that RNAi is activated during VSV infection and that RNAi is a genuine antiviral immune defence mechanism in the worm.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature03957