Loading…

Physiology and microbial community structure in soil at extreme water content

A sandy loam soil was brought to 6 water contents (13-100% WHC) to study the effects of extreme soil moistures on the physiological status of microbiota (represented by biomass characteristics, specific respiration, bacterial growth, and phospholipid fatty acid, PLFA, stress indicators) and microbia...

Full description

Saved in:
Bibliographic Details
Published in:Folia microbiologica 2005-01, Vol.50 (2), p.161-166, Article 161
Main Authors: Uhlírová, E, Elhottová, D, Tríska, J, Santrůcková, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A sandy loam soil was brought to 6 water contents (13-100% WHC) to study the effects of extreme soil moistures on the physiological status of microbiota (represented by biomass characteristics, specific respiration, bacterial growth, and phospholipid fatty acid, PLFA, stress indicators) and microbial community structure (assessed using PLFA fingerprints). In dry soils, microbial biomass and activity declined as a consequence of water and/or nutrient deficiency (indicated by PLFA stress indicators). These microbial communities were dominated by G+ bacteria and actinomycetes. Oxygen deficits in water-saturated soils did not eliminate microbial activity but the enormous accumulation of poly-3-hydroxybutyrate by bacteria showed the unbalanced growth in excess carbon conditions. High soil water content favored G bacteria.
ISSN:0015-5632
1874-9356
DOI:10.1007/BF02931466