Loading…

Electrochemical Behavior of Levodopa at Multi-Wall Carbon Nanotubes-Quantum Dots Modified Glassy Carbon Electrodes

A multi-wall carbon nanotubes (MWNTs)-quantum dots (QDs) composite-modified glassy carbon electrode (GCE) was prepared. The complex was characterized by transmission electron microscopy (TEM). The electrochemical behavior of levodopa at MWNTs and QDs-modified GCEs (MWNTs-QDs/GCE) was studied by cycl...

Full description

Saved in:
Bibliographic Details
Published in:Analytical Sciences 2007, Vol.23(11), pp.1321-1324
Main Authors: TU, Yi, XU, Qiao, ZOU, Qiu-Ju, YIN, Zhao-Hui, SUN, Yuan-Yuan, ZHAO, Yuan-Di
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multi-wall carbon nanotubes (MWNTs)-quantum dots (QDs) composite-modified glassy carbon electrode (GCE) was prepared. The complex was characterized by transmission electron microscopy (TEM). The electrochemical behavior of levodopa at MWNTs and QDs-modified GCEs (MWNTs-QDs/GCE) was studied by cyclic voltammetry (CV) and chronocoulometry (CC). It was found that its electrochemical behavior was a two-charge-two-proton process. The modified electrode had high electrocatalytic activity for levodopa with a standard heterogeneous rate constant of 0.595 cm s-1, which was greatly increased compared with the values for bare GCE and individual MWNTs modified GCE. The better electrocatalytic activity for levodopa at MWNTs-QDs/GCE may due to a synergistic effect between MWNTs and QDs. This result provides a novel way to promote research on biomicromolecules at nano-dimensions.
ISSN:0910-6340
1348-2246
DOI:10.2116/analsci.23.1321