Loading…

Magnetism in graphene nanoislands

We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zigzag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and th...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2007-10, Vol.99 (17), p.177204-177204, Article 177204
Main Authors: Fernández-Rossier, J, Palacios, J J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zigzag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin S consistent with Lieb's theorem for bipartite lattices. Triangles have a finite S for all sizes whereas hexagons have S=0 and develop local moments above a critical size of approximately 1.5 nm.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.99.177204