Loading…

A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data

Motivation: The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration b...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2007-11, Vol.23 (22), p.3080-3087
Main Authors: Post, Lennart J. G., Roos, Marco, Marshall, M. Scott, van Driel, Roel, Breit, Timo M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453
cites cdi_FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453
container_end_page 3087
container_issue 22
container_start_page 3080
container_title Bioinformatics
container_volume 23
creator Post, Lennart J. G.
Roos, Marco
Marshall, M. Scott
van Driel, Roel
Breit, Timo M.
description Motivation: The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing standardized formats such as RDF, RDF Schema (RDFS) and OWL, to achieve a formalized computational environment. Our semantic web-enabled data integration (SWEDI) approach aims to formalize biological domains by capturing the knowledge in semantic models using ontologies as controlled vocabularies. The strategy is to build a collection of relatively small but specific knowledge and data models, which together form a ‘personal semantic framework’. This can be linked to external large, general knowledge and data models. In this way, the involved scientists are familiar with the concepts and associated relationships in their models and can create semantic queries using their own terms. We studied the applicability of our SWEDI approach in the context of a biological use case by integrating genomics data sets for histone modification and transcription factor binding sites. Results: We constructed four OWL knowledge models, two RDFS data models, transformed and mapped relevant data to the data models, linked the data models to knowledge models using linkage statements, and ran semantic queries. Our biological use case demonstrates the relevance of these kinds of integrative bioinformatics experiments. Our findings show high startup costs for the SWEDI approach, but straightforward extension with similar data. Availability: Software, models and data sets, http://www.integrativebioinformatics.nl/swedi/index.html Contact: breit@science.uva.nl Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btm461
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_68524157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btm461</oup_id><sourcerecordid>19528103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453</originalsourceid><addsrcrecordid>eNqNkV9r1jAUxosobk4_ghIEvatLmj9NvRvD-SoTQRSHNyFNT95ltk2XpHvntzelL455ozfJCfye58k5pyieE_yG4IYet8670fow6ORMPG7TwAR5UBwSJnBZYd48zDUVdckkpgfFkxivMOaEMfa4OCC1lIRhcVjsTlCEQY_ZBO2gRXqagtfmcil6Bx1KHrkxwTbknBtA92MR3E4Q3ABjym8_vkV6IXq_dUb3aI6AjM7HzqVLtIXRD4uo00k_LR5Z3Ud4tr-Pim9n776ebsrzz-8_nJ6cl4ZXJJWtqYhtNesEsQ10teWsYR0XtKayqjQISrHVWLYNI9qauqLcGmk4NRRyr5weFa9X39zW9QwxqcFFA32vR_BzVELyihFe_xMkDa8kwTSDL_8Cr_wcxtxEZqQQ-QuLG18hE3yMAaya8ph0-KUIVsv-1P1BqnV_Wfdibz63A3R3qv3CMvBqD-iYR2yDHo2Ld1wjG1FJljm8cn6e_ju7XCUuJrj9I9LhpxI1rbnaXPxQX75__CTZRaM29De0j8sF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198662357</pqid></control><display><type>article</type><title>A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data</title><source>Open Access: Oxford University Press Open Journals</source><creator>Post, Lennart J. G. ; Roos, Marco ; Marshall, M. Scott ; van Driel, Roel ; Breit, Timo M.</creator><creatorcontrib>Post, Lennart J. G. ; Roos, Marco ; Marshall, M. Scott ; van Driel, Roel ; Breit, Timo M.</creatorcontrib><description>Motivation: The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing standardized formats such as RDF, RDF Schema (RDFS) and OWL, to achieve a formalized computational environment. Our semantic web-enabled data integration (SWEDI) approach aims to formalize biological domains by capturing the knowledge in semantic models using ontologies as controlled vocabularies. The strategy is to build a collection of relatively small but specific knowledge and data models, which together form a ‘personal semantic framework’. This can be linked to external large, general knowledge and data models. In this way, the involved scientists are familiar with the concepts and associated relationships in their models and can create semantic queries using their own terms. We studied the applicability of our SWEDI approach in the context of a biological use case by integrating genomics data sets for histone modification and transcription factor binding sites. Results: We constructed four OWL knowledge models, two RDFS data models, transformed and mapped relevant data to the data models, linked the data models to knowledge models using linkage statements, and ran semantic queries. Our biological use case demonstrates the relevance of these kinds of integrative bioinformatics experiments. Our findings show high startup costs for the SWEDI approach, but straightforward extension with similar data. Availability: Software, models and data sets, http://www.integrativebioinformatics.nl/swedi/index.html Contact: breit@science.uva.nl Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btm461</identifier><identifier>PMID: 17881406</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Artificial Intelligence ; Bioinformatics ; Biological and medical sciences ; Computational Biology - methods ; Database Management Systems ; Databases, Genetic ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genomics - methods ; Information Storage and Retrieval - methods ; Internet ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Natural Language Processing ; Proteins - chemistry ; Proteins - classification ; Proteins - metabolism ; Research Design ; Systems Integration</subject><ispartof>Bioinformatics, 2007-11, Vol.23 (22), p.3080-3087</ispartof><rights>2007 The Author(s) 2007</rights><rights>2008 INIST-CNRS</rights><rights>2007 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453</citedby><cites>FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btm461$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19896284$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17881406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Post, Lennart J. G.</creatorcontrib><creatorcontrib>Roos, Marco</creatorcontrib><creatorcontrib>Marshall, M. Scott</creatorcontrib><creatorcontrib>van Driel, Roel</creatorcontrib><creatorcontrib>Breit, Timo M.</creatorcontrib><title>A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing standardized formats such as RDF, RDF Schema (RDFS) and OWL, to achieve a formalized computational environment. Our semantic web-enabled data integration (SWEDI) approach aims to formalize biological domains by capturing the knowledge in semantic models using ontologies as controlled vocabularies. The strategy is to build a collection of relatively small but specific knowledge and data models, which together form a ‘personal semantic framework’. This can be linked to external large, general knowledge and data models. In this way, the involved scientists are familiar with the concepts and associated relationships in their models and can create semantic queries using their own terms. We studied the applicability of our SWEDI approach in the context of a biological use case by integrating genomics data sets for histone modification and transcription factor binding sites. Results: We constructed four OWL knowledge models, two RDFS data models, transformed and mapped relevant data to the data models, linked the data models to knowledge models using linkage statements, and ran semantic queries. Our biological use case demonstrates the relevance of these kinds of integrative bioinformatics experiments. Our findings show high startup costs for the SWEDI approach, but straightforward extension with similar data. Availability: Software, models and data sets, http://www.integrativebioinformatics.nl/swedi/index.html Contact: breit@science.uva.nl Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Database Management Systems</subject><subject>Databases, Genetic</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genomics - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Internet</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Natural Language Processing</subject><subject>Proteins - chemistry</subject><subject>Proteins - classification</subject><subject>Proteins - metabolism</subject><subject>Research Design</subject><subject>Systems Integration</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkV9r1jAUxosobk4_ghIEvatLmj9NvRvD-SoTQRSHNyFNT95ltk2XpHvntzelL455ozfJCfye58k5pyieE_yG4IYet8670fow6ORMPG7TwAR5UBwSJnBZYd48zDUVdckkpgfFkxivMOaEMfa4OCC1lIRhcVjsTlCEQY_ZBO2gRXqagtfmcil6Bx1KHrkxwTbknBtA92MR3E4Q3ABjym8_vkV6IXq_dUb3aI6AjM7HzqVLtIXRD4uo00k_LR5Z3Ud4tr-Pim9n776ebsrzz-8_nJ6cl4ZXJJWtqYhtNesEsQ10teWsYR0XtKayqjQISrHVWLYNI9qauqLcGmk4NRRyr5weFa9X39zW9QwxqcFFA32vR_BzVELyihFe_xMkDa8kwTSDL_8Cr_wcxtxEZqQQ-QuLG18hE3yMAaya8ph0-KUIVsv-1P1BqnV_Wfdibz63A3R3qv3CMvBqD-iYR2yDHo2Ld1wjG1FJljm8cn6e_ju7XCUuJrj9I9LhpxI1rbnaXPxQX75__CTZRaM29De0j8sF</recordid><startdate>20071115</startdate><enddate>20071115</enddate><creator>Post, Lennart J. G.</creator><creator>Roos, Marco</creator><creator>Marshall, M. Scott</creator><creator>van Driel, Roel</creator><creator>Breit, Timo M.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071115</creationdate><title>A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data</title><author>Post, Lennart J. G. ; Roos, Marco ; Marshall, M. Scott ; van Driel, Roel ; Breit, Timo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Database Management Systems</topic><topic>Databases, Genetic</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genomics - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Internet</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Natural Language Processing</topic><topic>Proteins - chemistry</topic><topic>Proteins - classification</topic><topic>Proteins - metabolism</topic><topic>Research Design</topic><topic>Systems Integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Post, Lennart J. G.</creatorcontrib><creatorcontrib>Roos, Marco</creatorcontrib><creatorcontrib>Marshall, M. Scott</creatorcontrib><creatorcontrib>van Driel, Roel</creatorcontrib><creatorcontrib>Breit, Timo M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Post, Lennart J. G.</au><au>Roos, Marco</au><au>Marshall, M. Scott</au><au>van Driel, Roel</au><au>Breit, Timo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2007-11-15</date><risdate>2007</risdate><volume>23</volume><issue>22</issue><spage>3080</spage><epage>3087</epage><pages>3080-3087</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing standardized formats such as RDF, RDF Schema (RDFS) and OWL, to achieve a formalized computational environment. Our semantic web-enabled data integration (SWEDI) approach aims to formalize biological domains by capturing the knowledge in semantic models using ontologies as controlled vocabularies. The strategy is to build a collection of relatively small but specific knowledge and data models, which together form a ‘personal semantic framework’. This can be linked to external large, general knowledge and data models. In this way, the involved scientists are familiar with the concepts and associated relationships in their models and can create semantic queries using their own terms. We studied the applicability of our SWEDI approach in the context of a biological use case by integrating genomics data sets for histone modification and transcription factor binding sites. Results: We constructed four OWL knowledge models, two RDFS data models, transformed and mapped relevant data to the data models, linked the data models to knowledge models using linkage statements, and ran semantic queries. Our biological use case demonstrates the relevance of these kinds of integrative bioinformatics experiments. Our findings show high startup costs for the SWEDI approach, but straightforward extension with similar data. Availability: Software, models and data sets, http://www.integrativebioinformatics.nl/swedi/index.html Contact: breit@science.uva.nl Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>17881406</pmid><doi>10.1093/bioinformatics/btm461</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2007-11, Vol.23 (22), p.3080-3087
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_68524157
source Open Access: Oxford University Press Open Journals
subjects Artificial Intelligence
Bioinformatics
Biological and medical sciences
Computational Biology - methods
Database Management Systems
Databases, Genetic
Fundamental and applied biological sciences. Psychology
General aspects
Genomics - methods
Information Storage and Retrieval - methods
Internet
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Natural Language Processing
Proteins - chemistry
Proteins - classification
Proteins - metabolism
Research Design
Systems Integration
title A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semantic%20web%20approach%20applied%20to%20integrative%20bioinformatics%20experimentation:%20a%20biological%20use%20case%20with%20genomics%20data&rft.jtitle=Bioinformatics&rft.au=Post,%20Lennart%20J.%20G.&rft.date=2007-11-15&rft.volume=23&rft.issue=22&rft.spage=3080&rft.epage=3087&rft.pages=3080-3087&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btm461&rft_dat=%3Cproquest_TOX%3E19528103%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-bc21fba4d61f9ed7f5494d56373822ae6330fa08b941afc7235fc8c53c3e14453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198662357&rft_id=info:pmid/17881406&rft_oup_id=10.1093/bioinformatics/btm461&rfr_iscdi=true