Loading…

Prognostic Bayesian networks I: rationale, learning procedure, and clinical use

Prognostic models are tools to predict the future outcome of disease and disease treatment, one of the fundamental tasks in clinical medicine. This article presents the prognostic Bayesian network (PBN) as a new type of prognostic model that builds on the Bayesian network methodology, and implements...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics 2007-12, Vol.40 (6), p.609-618
Main Authors: Verduijn, Marion, Peek, Niels, Rosseel, Peter M J, de Jonge, Evert, de Mol, Bas A J M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prognostic models are tools to predict the future outcome of disease and disease treatment, one of the fundamental tasks in clinical medicine. This article presents the prognostic Bayesian network (PBN) as a new type of prognostic model that builds on the Bayesian network methodology, and implements a dynamic, process-oriented view on prognosis. A PBN describes the mutual relationships between variables that come into play during subsequent stages of a care process and a clinical outcome. A dedicated procedure for inducing these networks from clinical data is presented. In this procedure, the network is composed of a collection of local supervised learning models that are recursively learned from the data. The procedure optimizes performance of the network's primary task, outcome prediction, and handles the fact that patients may drop out of the process in earlier stages. Furthermore, the article describes how PBNs can be applied to solve a number of information problems that are related to medical prognosis.
ISSN:1532-0480
DOI:10.1016/j.jbi.2007.07.003