Loading…
Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.)
One of the main limitations of cereal breeding is the lack of genetic variability within cultivated crops. Hordeum chilense is a wild relative of Hordeum vulgare, which has been successfully used in the synthesis of amphiploids by crossing with Triticum spp. Among the agronomic traits of these new a...
Saved in:
Published in: | Theoretical and applied genetics 2005-08, Vol.111 (3), p.551-560 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the main limitations of cereal breeding is the lack of genetic variability within cultivated crops. Hordeum chilense is a wild relative of Hordeum vulgare, which has been successfully used in the synthesis of amphiploids by crossing with Triticum spp. Among the agronomic traits of these new amphiploids, the allelic variation in the endosperm storage proteins and their influence on breadmaking and malting quality are of special interest. B-hordeins are sulfur rich prolamins, which account for 70-80% of the total hordein fraction in barley. In this work, rapid amplification of cDNA ends by PCR (RACE-PCR) has been used for the cloning of the full-length open reading frame (ORF) of six sequences of B3-hordeins from two lines of H. chilense. Two consensus sequences of 813 and 822 bp for the H1 and H7 lines, respectively, were determined by alignment of all the sequences generated. Between both lines, differences involving single base changes, which could correspond to single nucleotide polymorphisms (SNP), insertions and deletions were observed. Of these differences, only six out of the 13 within the ORF caused a change of amino acid. Two insertions/deletions of 9 and 12 bp were also observed between both lines. The derived amino acid sequences showed a similar structure to the B-hordeins from cultivated barley and other prolamins. The repetitive region is based on the repetition of the motif PQQPFPQQ. The copy number of the B3-hordeins was estimated as a minimum of nine and five copies for the H1 and H7 lines, respectively. The expression profile of the B-hordeins through the developing endosperm is also described in this work. This study of the storage proteins of H. chilense is a useful contribution to the knowledge of the genetic diversity available in wild relatives of cultivated barley. In addition, the origin of the different prolamins can be better understood with an in-depth knowledge of its wild equivalent. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/s00122-005-2046-0 |