Loading…

A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images

We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical at...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2007-12, Vol.52 (23), p.6893-6908
Main Authors: Hogea, Cosmina, Biros, George, Abraham, Feby, Davatzikos, Christos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83
cites cdi_FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83
container_end_page 6908
container_issue 23
container_start_page 6893
container_title Physics in medicine & biology
container_volume 52
creator Hogea, Cosmina
Biros, George
Abraham, Feby
Davatzikos, Christos
description We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases.
doi_str_mv 10.1088/0031-9155/52/23/008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68543414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68543414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UBAvlEyBVPvVQKaz_xLFzRNBCJRASomfLceyt22Sdehyhfnu83dVyKOI0mje_eTN6CJ1TckGJUktCOK1aKsRSsCXjpVcHaEF5Q6tGNOQDWuyJY3QC8IsQShWrj9AxVYS1rWILBJc4xW6GjH0yo3uO6Tf2MWGIPuMcAGaHIYzzYHKIa8DPIf_EZpqGYP8pOEc8xt4NYb3CXTKhKPNYDEYDgJ33zmZcRH6N7x9xGM3KwUd06M0A7mxXT9GPb1-frm6ru4eb71eXd5XlUubK2FqSnvQto62zlknStbJhQtq-tZJKp2onmbDGqnJF-Fp2XjaSNlwyVqb8FH3e-k4p_pkdZD0GsG4YzNrFGXSjRM1rWheQb0GbIkByXk-pvJr-akr0Jmu9SVJvktSCacZLv7H_tLOfu9H1rzu7cAvwZQuEOO2nbzjpqfcFvvgffu_8CziJlYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68543414</pqid></control><display><type>article</type><title>A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images</title><source>Institute of Physics</source><creator>Hogea, Cosmina ; Biros, George ; Abraham, Feby ; Davatzikos, Christos</creator><creatorcontrib>Hogea, Cosmina ; Biros, George ; Abraham, Feby ; Davatzikos, Christos</creatorcontrib><description>We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/52/23/008</identifier><identifier>PMID: 18029982</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Brain Neoplasms - diagnosis ; Brain Neoplasms - physiopathology ; Computer Simulation ; Connective Tissue - pathology ; Connective Tissue - physiopathology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Neurological ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Physics in medicine &amp; biology, 2007-12, Vol.52 (23), p.6893-6908</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83</citedby><cites>FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18029982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hogea, Cosmina</creatorcontrib><creatorcontrib>Biros, George</creatorcontrib><creatorcontrib>Abraham, Feby</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><title>A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases.</description><subject>Algorithms</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Computer Simulation</subject><subject>Connective Tissue - pathology</subject><subject>Connective Tissue - physiopathology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Neurological</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1UBAvlEyBVPvVQKaz_xLFzRNBCJRASomfLceyt22Sdehyhfnu83dVyKOI0mje_eTN6CJ1TckGJUktCOK1aKsRSsCXjpVcHaEF5Q6tGNOQDWuyJY3QC8IsQShWrj9AxVYS1rWILBJc4xW6GjH0yo3uO6Tf2MWGIPuMcAGaHIYzzYHKIa8DPIf_EZpqGYP8pOEc8xt4NYb3CXTKhKPNYDEYDgJ33zmZcRH6N7x9xGM3KwUd06M0A7mxXT9GPb1-frm6ru4eb71eXd5XlUubK2FqSnvQto62zlknStbJhQtq-tZJKp2onmbDGqnJF-Fp2XjaSNlwyVqb8FH3e-k4p_pkdZD0GsG4YzNrFGXSjRM1rWheQb0GbIkByXk-pvJr-akr0Jmu9SVJvktSCacZLv7H_tLOfu9H1rzu7cAvwZQuEOO2nbzjpqfcFvvgffu_8CziJlYI</recordid><startdate>20071207</startdate><enddate>20071207</enddate><creator>Hogea, Cosmina</creator><creator>Biros, George</creator><creator>Abraham, Feby</creator><creator>Davatzikos, Christos</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071207</creationdate><title>A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images</title><author>Hogea, Cosmina ; Biros, George ; Abraham, Feby ; Davatzikos, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Computer Simulation</topic><topic>Connective Tissue - pathology</topic><topic>Connective Tissue - physiopathology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Neurological</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogea, Cosmina</creatorcontrib><creatorcontrib>Biros, George</creatorcontrib><creatorcontrib>Abraham, Feby</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogea, Cosmina</au><au>Biros, George</au><au>Abraham, Feby</au><au>Davatzikos, Christos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2007-12-07</date><risdate>2007</risdate><volume>52</volume><issue>23</issue><spage>6893</spage><epage>6908</epage><pages>6893-6908</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>18029982</pmid><doi>10.1088/0031-9155/52/23/008</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2007-12, Vol.52 (23), p.6893-6908
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_68543414
source Institute of Physics
subjects Algorithms
Brain Neoplasms - diagnosis
Brain Neoplasms - physiopathology
Computer Simulation
Connective Tissue - pathology
Connective Tissue - physiopathology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Models, Neurological
Reproducibility of Results
Sensitivity and Specificity
title A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20framework%20for%20soft%20tissue%20simulations%20with%20application%20to%20modeling%20brain%20tumor%20mass%20effect%20in%203D%20MR%20images&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Hogea,%20Cosmina&rft.date=2007-12-07&rft.volume=52&rft.issue=23&rft.spage=6893&rft.epage=6908&rft.pages=6893-6908&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/52/23/008&rft_dat=%3Cproquest_cross%3E68543414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-ac470d0d9219ecc270b976257cd9c717e84e725cac8fec5f47bf7671637227e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68543414&rft_id=info:pmid/18029982&rfr_iscdi=true