Loading…

Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences

This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2006-02, Vol.68 (2), p.315-341
Main Authors: Aittokallio, T, Gyllenberg, M, Polo, O, Toivonen, J, Virkki, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3
cites cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3
container_end_page 341
container_issue 2
container_start_page 315
container_title Bulletin of mathematical biology
container_volume 68
creator Aittokallio, T
Gyllenberg, M
Polo, O
Toivonen, J
Virkki, A
description This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.
doi_str_mv 10.1007/s11538-005-9059-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68569143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20336857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</originalsourceid><addsrcrecordid>eNqFkTtrHDEUhUVIiNdOfoCbMKRIJ-fqNVqVwTixwcZNUrkQelzhMTOjja4H4n_vWXYhkCbVab5zuNyPsXMBFwLAfiUhjNpyAMMdGMfVG7YRRkruepBv2QbASb6VGk7YKdETrB2n3Ht2InrrtFNqwx7uasaRx0CYuzCH8YUG6mrpJkyPYR5ooq4h7epMQxyxK7V1NCLu-DDnJa2lFFqsc5eH-mfIuGYp2HBOSB_YuxJGwo_HPGO_vl_9vLzmt_c_bi6_3fKkjH3mUsRkAyJKG1GYlKAYqY0OSUMCg6FoC5idihCF0UVp3Ruro85ossSoztiXw-6u1d8L0rOfBko4jmHGupDvt6Z3Qqv_ghKUWmG7gp__AZ_q0tbvkLdKSwXOyhUSByi1StSw-F0bptBevAC_9-MPfvzqx-_9-P0Fn47DS5ww_20chahXlIKL8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734230972</pqid></control><display><type>article</type><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><source>Springer Link</source><creator>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</creator><creatorcontrib>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</creatorcontrib><description>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-005-9059-3</identifier><identifier>PMID: 16794933</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Algorithms ; Carbon Dioxide - metabolism ; Diffusion ; Female ; Hemoglobins - metabolism ; Humans ; Kinetics ; Lung - metabolism ; Mathematical models ; Models, Biological ; Postmenopause - metabolism ; Postmenopause - physiology ; Premenopause - metabolism ; Premenopause - physiology ; Pulmonary Ventilation - physiology ; Regional Blood Flow - physiology ; Sleep - physiology ; Studies</subject><ispartof>Bulletin of mathematical biology, 2006-02, Vol.68 (2), p.315-341</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</citedby><cites>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16794933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aittokallio, T</creatorcontrib><creatorcontrib>Gyllenberg, M</creatorcontrib><creatorcontrib>Polo, O</creatorcontrib><creatorcontrib>Toivonen, J</creatorcontrib><creatorcontrib>Virkki, A</creatorcontrib><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</description><subject>Algorithms</subject><subject>Carbon Dioxide - metabolism</subject><subject>Diffusion</subject><subject>Female</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lung - metabolism</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Postmenopause - metabolism</subject><subject>Postmenopause - physiology</subject><subject>Premenopause - metabolism</subject><subject>Premenopause - physiology</subject><subject>Pulmonary Ventilation - physiology</subject><subject>Regional Blood Flow - physiology</subject><subject>Sleep - physiology</subject><subject>Studies</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkTtrHDEUhUVIiNdOfoCbMKRIJ-fqNVqVwTixwcZNUrkQelzhMTOjja4H4n_vWXYhkCbVab5zuNyPsXMBFwLAfiUhjNpyAMMdGMfVG7YRRkruepBv2QbASb6VGk7YKdETrB2n3Ht2InrrtFNqwx7uasaRx0CYuzCH8YUG6mrpJkyPYR5ooq4h7epMQxyxK7V1NCLu-DDnJa2lFFqsc5eH-mfIuGYp2HBOSB_YuxJGwo_HPGO_vl_9vLzmt_c_bi6_3fKkjH3mUsRkAyJKG1GYlKAYqY0OSUMCg6FoC5idihCF0UVp3Ruro85ossSoztiXw-6u1d8L0rOfBko4jmHGupDvt6Z3Qqv_ghKUWmG7gp__AZ_q0tbvkLdKSwXOyhUSByi1StSw-F0bptBevAC_9-MPfvzqx-_9-P0Fn47DS5ww_20chahXlIKL8Q</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Aittokallio, T</creator><creator>Gyllenberg, M</creator><creator>Polo, O</creator><creator>Toivonen, J</creator><creator>Virkki, A</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><author>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Carbon Dioxide - metabolism</topic><topic>Diffusion</topic><topic>Female</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lung - metabolism</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Postmenopause - metabolism</topic><topic>Postmenopause - physiology</topic><topic>Premenopause - metabolism</topic><topic>Premenopause - physiology</topic><topic>Pulmonary Ventilation - physiology</topic><topic>Regional Blood Flow - physiology</topic><topic>Sleep - physiology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aittokallio, T</creatorcontrib><creatorcontrib>Gyllenberg, M</creatorcontrib><creatorcontrib>Polo, O</creatorcontrib><creatorcontrib>Toivonen, J</creatorcontrib><creatorcontrib>Virkki, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aittokallio, T</au><au>Gyllenberg, M</au><au>Polo, O</au><au>Toivonen, J</au><au>Virkki, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2006-02</date><risdate>2006</risdate><volume>68</volume><issue>2</issue><spage>315</spage><epage>341</epage><pages>315-341</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>16794933</pmid><doi>10.1007/s11538-005-9059-3</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2006-02, Vol.68 (2), p.315-341
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_68569143
source Springer Link
subjects Algorithms
Carbon Dioxide - metabolism
Diffusion
Female
Hemoglobins - metabolism
Humans
Kinetics
Lung - metabolism
Mathematical models
Models, Biological
Postmenopause - metabolism
Postmenopause - physiology
Premenopause - metabolism
Premenopause - physiology
Pulmonary Ventilation - physiology
Regional Blood Flow - physiology
Sleep - physiology
Studies
title Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20analysis%20of%20mechanisms%20responsible%20for%20sleep-induced%20carbon%20dioxide%20differences&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Aittokallio,%20T&rft.date=2006-02&rft.volume=68&rft.issue=2&rft.spage=315&rft.epage=341&rft.pages=315-341&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-005-9059-3&rft_dat=%3Cproquest_cross%3E20336857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734230972&rft_id=info:pmid/16794933&rfr_iscdi=true