Loading…
Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences
This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely...
Saved in:
Published in: | Bulletin of mathematical biology 2006-02, Vol.68 (2), p.315-341 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3 |
container_end_page | 341 |
container_issue | 2 |
container_start_page | 315 |
container_title | Bulletin of mathematical biology |
container_volume | 68 |
creator | Aittokallio, T Gyllenberg, M Polo, O Toivonen, J Virkki, A |
description | This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies. |
doi_str_mv | 10.1007/s11538-005-9059-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68569143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20336857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</originalsourceid><addsrcrecordid>eNqFkTtrHDEUhUVIiNdOfoCbMKRIJ-fqNVqVwTixwcZNUrkQelzhMTOjja4H4n_vWXYhkCbVab5zuNyPsXMBFwLAfiUhjNpyAMMdGMfVG7YRRkruepBv2QbASb6VGk7YKdETrB2n3Ht2InrrtFNqwx7uasaRx0CYuzCH8YUG6mrpJkyPYR5ooq4h7epMQxyxK7V1NCLu-DDnJa2lFFqsc5eH-mfIuGYp2HBOSB_YuxJGwo_HPGO_vl_9vLzmt_c_bi6_3fKkjH3mUsRkAyJKG1GYlKAYqY0OSUMCg6FoC5idihCF0UVp3Ruro85ossSoztiXw-6u1d8L0rOfBko4jmHGupDvt6Z3Qqv_ghKUWmG7gp__AZ_q0tbvkLdKSwXOyhUSByi1StSw-F0bptBevAC_9-MPfvzqx-_9-P0Fn47DS5ww_20chahXlIKL8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734230972</pqid></control><display><type>article</type><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><source>Springer Link</source><creator>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</creator><creatorcontrib>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</creatorcontrib><description>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-005-9059-3</identifier><identifier>PMID: 16794933</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Algorithms ; Carbon Dioxide - metabolism ; Diffusion ; Female ; Hemoglobins - metabolism ; Humans ; Kinetics ; Lung - metabolism ; Mathematical models ; Models, Biological ; Postmenopause - metabolism ; Postmenopause - physiology ; Premenopause - metabolism ; Premenopause - physiology ; Pulmonary Ventilation - physiology ; Regional Blood Flow - physiology ; Sleep - physiology ; Studies</subject><ispartof>Bulletin of mathematical biology, 2006-02, Vol.68 (2), p.315-341</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</citedby><cites>FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16794933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aittokallio, T</creatorcontrib><creatorcontrib>Gyllenberg, M</creatorcontrib><creatorcontrib>Polo, O</creatorcontrib><creatorcontrib>Toivonen, J</creatorcontrib><creatorcontrib>Virkki, A</creatorcontrib><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</description><subject>Algorithms</subject><subject>Carbon Dioxide - metabolism</subject><subject>Diffusion</subject><subject>Female</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lung - metabolism</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Postmenopause - metabolism</subject><subject>Postmenopause - physiology</subject><subject>Premenopause - metabolism</subject><subject>Premenopause - physiology</subject><subject>Pulmonary Ventilation - physiology</subject><subject>Regional Blood Flow - physiology</subject><subject>Sleep - physiology</subject><subject>Studies</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkTtrHDEUhUVIiNdOfoCbMKRIJ-fqNVqVwTixwcZNUrkQelzhMTOjja4H4n_vWXYhkCbVab5zuNyPsXMBFwLAfiUhjNpyAMMdGMfVG7YRRkruepBv2QbASb6VGk7YKdETrB2n3Ht2InrrtFNqwx7uasaRx0CYuzCH8YUG6mrpJkyPYR5ooq4h7epMQxyxK7V1NCLu-DDnJa2lFFqsc5eH-mfIuGYp2HBOSB_YuxJGwo_HPGO_vl_9vLzmt_c_bi6_3fKkjH3mUsRkAyJKG1GYlKAYqY0OSUMCg6FoC5idihCF0UVp3Ruro85ossSoztiXw-6u1d8L0rOfBko4jmHGupDvt6Z3Qqv_ghKUWmG7gp__AZ_q0tbvkLdKSwXOyhUSByi1StSw-F0bptBevAC_9-MPfvzqx-_9-P0Fn47DS5ww_20chahXlIKL8Q</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Aittokallio, T</creator><creator>Gyllenberg, M</creator><creator>Polo, O</creator><creator>Toivonen, J</creator><creator>Virkki, A</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</title><author>Aittokallio, T ; Gyllenberg, M ; Polo, O ; Toivonen, J ; Virkki, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Carbon Dioxide - metabolism</topic><topic>Diffusion</topic><topic>Female</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lung - metabolism</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Postmenopause - metabolism</topic><topic>Postmenopause - physiology</topic><topic>Premenopause - metabolism</topic><topic>Premenopause - physiology</topic><topic>Pulmonary Ventilation - physiology</topic><topic>Regional Blood Flow - physiology</topic><topic>Sleep - physiology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aittokallio, T</creatorcontrib><creatorcontrib>Gyllenberg, M</creatorcontrib><creatorcontrib>Polo, O</creatorcontrib><creatorcontrib>Toivonen, J</creatorcontrib><creatorcontrib>Virkki, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aittokallio, T</au><au>Gyllenberg, M</au><au>Polo, O</au><au>Toivonen, J</au><au>Virkki, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2006-02</date><risdate>2006</risdate><volume>68</volume><issue>2</issue><spage>315</spage><epage>341</epage><pages>315-341</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>16794933</pmid><doi>10.1007/s11538-005-9059-3</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2006-02, Vol.68 (2), p.315-341 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_68569143 |
source | Springer Link |
subjects | Algorithms Carbon Dioxide - metabolism Diffusion Female Hemoglobins - metabolism Humans Kinetics Lung - metabolism Mathematical models Models, Biological Postmenopause - metabolism Postmenopause - physiology Premenopause - metabolism Premenopause - physiology Pulmonary Ventilation - physiology Regional Blood Flow - physiology Sleep - physiology Studies |
title | Model-based analysis of mechanisms responsible for sleep-induced carbon dioxide differences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20analysis%20of%20mechanisms%20responsible%20for%20sleep-induced%20carbon%20dioxide%20differences&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Aittokallio,%20T&rft.date=2006-02&rft.volume=68&rft.issue=2&rft.spage=315&rft.epage=341&rft.pages=315-341&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-005-9059-3&rft_dat=%3Cproquest_cross%3E20336857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-21bc7aeee27be15cc0f52454ac40c05eaf470ed93b0b154f3446574b4de5d2eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734230972&rft_id=info:pmid/16794933&rfr_iscdi=true |