Loading…

Previtellogenic Oocyte Growth in Salmon: Relationships among Body Growth, Plasma Insulin-Like Growth Factor-1, Estradiol-17beta, Follicle-Stimulating Hormone and Expression of Ovarian Genes for Insulin-Like Growth Factors, Steroidogenic-Acute Regulatory Protein and Receptors for Gonadotropins, Growth Hormone, and Somatolactin

Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the gro...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2006-07, Vol.75 (1), p.34-44
Main Authors: CAMPBELL, B, DICKEY, J, BECKMAN, B, YOUNG, G, PIERCE, A, FUKADA, H, SWANSON, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star , igf1, and igf2 . A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development. Abstract Previtellogenic oocyte growth in the coho salmon is accompanied by significant changes in systemic and intraovarian factors of both the somatotropic and reproductive axes.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.105.049494