Loading…

Matrix metalloproteinase expression in basal cell carcinoma: relationship between enzyme profile and collagen fragmentation pattern

Matrix metalloproteinases (MMPs) with collagenolytic and gelatinolytic activities are up-regulated in basal cell carcinoma. In the present study we demonstrate that the major collagenolytic enzyme detected is MMP-1 (interstitial collagenase) while gelatinolytic enzymes include both MMP-2 (72-kDa gel...

Full description

Saved in:
Bibliographic Details
Published in:Experimental and molecular pathology 2005-10, Vol.79 (2), p.151-160
Main Authors: Yucel, Taskin, Mutnal, Amar, Fay, Kevin, Fligiel, Suzanne E.G., Wang, Timothy, Johnson, Timothy, Baker, Shan R., Varani, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Matrix metalloproteinases (MMPs) with collagenolytic and gelatinolytic activities are up-regulated in basal cell carcinoma. In the present study we demonstrate that the major collagenolytic enzyme detected is MMP-1 (interstitial collagenase) while gelatinolytic enzymes include both MMP-2 (72-kDa gelatinase A) and MMP-9 (92-kDa gelatinase B). Significant fractions of all three enzymes are present as active forms. In spite of the fact that high levels of gelatinolytic enzymes are present, the major fragmentation products resulting from digestion of intact type I collagen are the 1/4 and 3/4 fragments (products of MMP-1-mediated digestion). Thus, it appears that the gelatinolytic enzymes are not capable of degrading the collagen fragments as rapidly as they are produced. Since previous studies have demonstrated that interaction of interstitial fibroblasts with high molecular weight fragments of type I collagen leads to increased MMP production, the present results suggest a mechanism underlying altered function of stromal elements in the connective tissue adjacent to the growing neoplasm.
ISSN:0014-4800
1096-0945
DOI:10.1016/j.yexmp.2005.05.003