Loading…
Multievidence microarray mining
Microarray mining is a challenging task because of the superposition of several processes in the data. We believe that the combination of microarray data-based analyses (statistical significance analysis of gene expression) with array-independent analyses (literature-mining and promoter analysis) en...
Saved in:
Published in: | Trends in genetics 2005-10, Vol.21 (10), p.553-558 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microarray mining is a challenging task because of the superposition of several processes in the data. We believe that the combination of microarray data-based analyses (statistical significance analysis of gene expression) with array-independent analyses (literature-mining and promoter analysis) enables some of the problems of traditional array analysis to be overcome. As a proof-of-principle, we revisited publicly available microarray data derived from an experiment with platelet-derived growth factor (PDGF)-stimulated fibroblasts. Our strategy revealed results beyond the detection of the major metabolic pathway known to be linked to the PDGF response: we were able to identify the crosstalking regulatory networks underlying the metabolic pathway without using
a priori knowledge about the experiment. |
---|---|
ISSN: | 0168-9525 |
DOI: | 10.1016/j.tig.2005.07.011 |