Loading…

On the performance of telemedicine system using 17-GHz orthogonally polarized microwave links under the influence of heavy rainfall

This paper describes the design of a telemedicine system based on next-generation wireless local area networks (WLANs) operating at 17 GHz. Seventeen gigahertz is proposed for next-generation WLAN services offering numerous advantages over traditional IEEE 802.11 networks that operate in the range o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2005-09, Vol.9 (3), p.424-429
Main Authors: Bernard Fong, Fong, A.C.M., Hong, G.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the design of a telemedicine system based on next-generation wireless local area networks (WLANs) operating at 17 GHz. Seventeen gigahertz is proposed for next-generation WLAN services offering numerous advantages over traditional IEEE 802.11 networks that operate in the range of 2.4-5 GHz. Orthogonal polarization is often used to increase spectrum efficiency by utilizing signal paths of horizontal and vertical polarization. Radio waves exceeding 10 GHz are particularly vulnerable to signal degradation under the influence of rain which causes an effective reduction in isolation between polarized signal paths. This paper investigates the influence of heavy rain in a tropical region on wide-band microwave signals at 17 GHz using two links provided by a fixed broad-band wireless access system for two-way data exchange between paramedics attending an accident scene and the hospital via microwave equipment installed in the ambulance. We also study the effects of cross polarization and phase rotation due to persistent heavy rainfall in tropical regions.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2005.847499