Loading…
Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature
Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)–containing bioconjugate that potentially could be used to target up-r...
Saved in:
Published in: | Molecular cancer therapeutics 2005-09, Vol.4 (9), p.1423-1429 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of
cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)–containing bioconjugate
that potentially could be used to target up-regulated VEGF receptors (VEGFR), which are overexpressed on tumor neovasculature.
A fifth-generation polyamidoamine dendrimer containing 128 reactive amino groups was reacted with 105 to 110 decaborate molecules
to produce a macromolecule with 1,050 to 1,100 boron atoms per dendrimer. This was conjugated to thiol groups of VEGF at a
4:1 molar ratio using the heterobifunctional reagent sulfo-LC-SPDP. In addition, the boronated dendrimer was tagged with a
near-IR Cy5 dye to allow for near-IR fluorescent imaging of the bioconjugate in vitro and in vivo . As would be predicted, the resulting VEGF-BD/Cy5 bioconjugate was not cytotoxic to HEK293 cells engineered to express 2.5
× 10 6 VEGFR-2 per cell. Furthermore, it showed binding and activation of VEGFR-2 comparable with that of native VEGF. Internalization
of VEGF-BD/Cy5 by PAE cells expressing 2.5 × 10 5 VEGFR-2 per cell was inhibited by excess VEGF, indicating a VEGFR-2-mediated mechanism of uptake. Near-IR fluorescent imaging
of 4T1 mouse breast carcinoma revealed selective accumulation of VEGF-BD/Cy5, but not BD/Cy5, particularly at the tumor periphery
where angiogenesis was most active. Accumulation of VEGF-BD/Cy5 in 4T1 breast carcinoma was diminished in mice pretreated
with a toxin-VEGF fusion protein that selectively killed VEGFR-2-overexpressing endothelial cells. Our data lay the groundwork
for future studies using the VEGF-BD/Cy5 bioconjugate as a targeting agent for BNCT of tumor neovasculature. |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-05-0161 |