Loading…

Ground- and excited-state electronic structure of an iron-containing molecular spin photoswitch

The electronic structure of the cation of [ Fe ( ptz ) 6 ] ( B F 4 ) 2 , a prototype of a class of complexes that display light-induced excited-state spin trapping (LIESST), has been investigated by time-independent and time-dependent density-functional theories. The density of states of the singlet...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-09, Vol.123 (9), p.094709-094709-6
Main Author: Rodriguez, Jorge H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electronic structure of the cation of [ Fe ( ptz ) 6 ] ( B F 4 ) 2 , a prototype of a class of complexes that display light-induced excited-state spin trapping (LIESST), has been investigated by time-independent and time-dependent density-functional theories. The density of states of the singlet ground state reveals that the highest occupied orbitals are metal centered and give rise to a low spin configuration Fe 2 + ( 3 d x y ↑ ↓ 3 d x z ↑ ↓ 3 d y z ↑ ↓ ) in agreement with experiment. Upon excitation with light in the 2.3 - 3.3 eV range, metal-centered spin-allowed but parity-forbidden ligand field (LF) antibonding states are populated which, in conjunction with electron-phonon coupling, explain the experimental absorption intensities. The computed excitation energies are in excellent agreement with experiment. Contrary to simpler models we show that the LF absorption bands, which are important for LIESST, do not originate in transitions from the ground to a single excited state but from transitions to manifolds of nearly degenerate excited singlets. Consistent with crystallography, population of the LF states promotes a drastic dilation of the ligand cage surrounding the iron.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2018631