Loading…

TRAIL-induced apoptosis proceeding from caspase-3-dependent and -independent pathways in distinct HeLa cells

The apoptotic pathway in higher eukaryotes remains controversial with respect to the necessity of activation of caspase-3 in TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-treated cells. In this study, a fluorescence resonance energy transfer (FRET) probe was developed to image the...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2006-08, Vol.346 (4), p.1136-1141
Main Authors: Lin, Juqiang, Zhang, Zhihong, Zeng, Shaoqun, Zhou, Shixia, Liu, Bi-Feng, Liu, Qian, Yang, Jie, Luo, Qingming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The apoptotic pathway in higher eukaryotes remains controversial with respect to the necessity of activation of caspase-3 in TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-treated cells. In this study, a fluorescence resonance energy transfer (FRET) probe was developed to image the activation of caspase-3 and the related apoptotic pathway in TRAIL-treated cells in real time. Both kinds of apoptotic pathways were observed simultaneously in the same experiment proceeding from activation and non-activation of caspase-3. The total apoptotic rate was 56.08%, the apoptotic rates for activation and non-activation of caspase-3 pathways were 21.5% and 34.58%, respectively, which were examined later for Hoechst 33258 staining and morphological characteristics. The apoptotic rate due to the activation of caspase-3 pathways in TRAIL-treated cells has been independently measured to be around 25.11% by capillary electrophoresis (CE) analysis, which confirmed the apoptotic rate due to activation of caspase-3 pathways as found by FRET analysis. This result also suggests that rest apoptosis is preceded by caspase-3-independent pathways, as CE has the ability to quantitatively detect caspase-dependent apoptosis. The observation of the coexistence of caspase-3-dependent and caspase-3-independent apoptotic pathways in the TRAIL-treated cells was unusual in comparison with the previous reports.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.05.209