Loading…

Induction of iron homeostasis genes during estrogen-induced uterine growth and differentiation

We have previously used genome-wide transcript profiling to investigate the relationships between changes in gene expression and physiological alterations during the response of the immature mouse uterus to estrogens. Here we describe the identification of a functionally inter-related group of estro...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular endocrinology 2006-07, Vol.253 (1), p.22-29
Main Authors: Stuckey, Ruth, Aldridge, Tom, Lim, Fei Ling, Moore, David J., Tinwell, Helen, Doherty, Nicola, Davies, Reginald, Smith, Andrew G., Kimber, Ian, Ashby, John, Orphanides, George, Moggs, Jonathan G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously used genome-wide transcript profiling to investigate the relationships between changes in gene expression and physiological alterations during the response of the immature mouse uterus to estrogens. Here we describe the identification of a functionally inter-related group of estrogen-responsive genes associated with iron homeostasis, including the iron-binding protein lactotransferrin, the ferroxidase ceruloplasmin, the iron delivery protein lipocalin 2 and the iron-exporter ferroportin. Quantitative real-time PCR revealed that the expression of these genes increases with time during the uterotrophic response, reaching maximal levels in the post-proliferative phase (between 48 and 72 h). In contrast, the heme biosynthesis genes aminolevulinic acid synthase 1 and 2 were maximally induced by estrogen at 2 and 4 h, respectively, prior to increased cell proliferation. Together, these data reveal that estrogen induces the temporally coordinated expression of iron homeostasis genes in the mouse uterus, and suggest an important role for iron metabolism during sex steroid hormone-induced uterine cell growth and differentiation.
ISSN:0303-7207
1872-8057
DOI:10.1016/j.mce.2006.03.031