Loading…

Modeling and incorporation of system response functions in 3-D whole body PET

Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more ge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2006-07, Vol.25 (7), p.828-837
Main Authors: Alessio, A.M., Kinahan, P.E., Lewellen, T.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533
cites cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533
container_end_page 837
container_issue 7
container_start_page 828
container_title IEEE transactions on medical imaging
container_volume 25
creator Alessio, A.M.
Kinahan, P.E.
Lewellen, T.K.
description Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter
doi_str_mv 10.1109/TMI.2006.873222
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68620973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1644799</ieee_id><sourcerecordid>20303384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</originalsourceid><addsrcrecordid>eNqF0UtLAzEUBeAgitbH2oUgwYWupiY3ySRZim-w6KKCuzBNMjoyndSkg_Tfm9KC4kJXWZzvXrg5CB1SMqSU6PPx6H4IhJRDJRkAbKABFUIVIPjLJhoQkKrIKeyg3ZTeCaFcEL2NdmipQHLFB2g0Cs63TfeKq87hprMhzkKs5k3ocKhxWqS5n-Lo0yx0yeO67-wyS5liVlzhz7fQejwJboGfrsf7aKuu2uQP1u8eer65Hl_eFQ-Pt_eXFw-F5ZLOC1sDE85NJPVacE2hItRKqEsJZS0nDEhVaZtzYTVhtVOSOxCOCOZBUsHYHjpb7Z3F8NH7NDfTJlnftlXnQ59MHqCaMglZnv4pS1UC0ZL9C4EwwpjiGZ78gu-hj10-16hSlCJ_scrofIVsDClFX5tZbKZVXBhKzLI5k5szy-bMqrk8cbxe20-m3n37dVUZHK1A473_EXMutWZfzIyaGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865654508</pqid></control><display><type>article</type><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><source>IEEE Xplore (Online service)</source><creator>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</creator><creatorcontrib>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</creatorcontrib><description>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2006.873222</identifier><identifier>PMID: 16827484</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computer Simulation ; Degradation ; Detector response ; Detectors ; Error correction ; Fourier rebinning (FORE) ; fully three-dimensional (3-D) positron emission tomography (PET) ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Models, Biological ; Neoplasms ; Numerical Analysis, Computer-Assisted ; Phantoms, Imaging ; Positron emission tomography ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; Reproducibility of Results ; Scattering ; Sensitivity and Specificity ; Size measurement ; Spatial resolution ; Studies ; system model ; system response ; Whole Body Imaging - methods ; Whole-body PET</subject><ispartof>IEEE transactions on medical imaging, 2006-07, Vol.25 (7), p.828-837</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</citedby><cites>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1644799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16827484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessio, A.M.</creatorcontrib><creatorcontrib>Kinahan, P.E.</creatorcontrib><creatorcontrib>Lewellen, T.K.</creatorcontrib><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Degradation</subject><subject>Detector response</subject><subject>Detectors</subject><subject>Error correction</subject><subject>Fourier rebinning (FORE)</subject><subject>fully three-dimensional (3-D) positron emission tomography (PET)</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Models, Biological</subject><subject>Neoplasms</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Phantoms, Imaging</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>Reproducibility of Results</subject><subject>Scattering</subject><subject>Sensitivity and Specificity</subject><subject>Size measurement</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>system model</subject><subject>system response</subject><subject>Whole Body Imaging - methods</subject><subject>Whole-body PET</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLAzEUBeAgitbH2oUgwYWupiY3ySRZim-w6KKCuzBNMjoyndSkg_Tfm9KC4kJXWZzvXrg5CB1SMqSU6PPx6H4IhJRDJRkAbKABFUIVIPjLJhoQkKrIKeyg3ZTeCaFcEL2NdmipQHLFB2g0Cs63TfeKq87hprMhzkKs5k3ocKhxWqS5n-Lo0yx0yeO67-wyS5liVlzhz7fQejwJboGfrsf7aKuu2uQP1u8eer65Hl_eFQ-Pt_eXFw-F5ZLOC1sDE85NJPVacE2hItRKqEsJZS0nDEhVaZtzYTVhtVOSOxCOCOZBUsHYHjpb7Z3F8NH7NDfTJlnftlXnQ59MHqCaMglZnv4pS1UC0ZL9C4EwwpjiGZ78gu-hj10-16hSlCJ_scrofIVsDClFX5tZbKZVXBhKzLI5k5szy-bMqrk8cbxe20-m3n37dVUZHK1A473_EXMutWZfzIyaGw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Alessio, A.M.</creator><creator>Kinahan, P.E.</creator><creator>Lewellen, T.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><author>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Degradation</topic><topic>Detector response</topic><topic>Detectors</topic><topic>Error correction</topic><topic>Fourier rebinning (FORE)</topic><topic>fully three-dimensional (3-D) positron emission tomography (PET)</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Models, Biological</topic><topic>Neoplasms</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Phantoms, Imaging</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>Reproducibility of Results</topic><topic>Scattering</topic><topic>Sensitivity and Specificity</topic><topic>Size measurement</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>system model</topic><topic>system response</topic><topic>Whole Body Imaging - methods</topic><topic>Whole-body PET</topic><toplevel>online_resources</toplevel><creatorcontrib>Alessio, A.M.</creatorcontrib><creatorcontrib>Kinahan, P.E.</creatorcontrib><creatorcontrib>Lewellen, T.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessio, A.M.</au><au>Kinahan, P.E.</au><au>Lewellen, T.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and incorporation of system response functions in 3-D whole body PET</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>25</volume><issue>7</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16827484</pmid><doi>10.1109/TMI.2006.873222</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2006-07, Vol.25 (7), p.828-837
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_68620973
source IEEE Xplore (Online service)
subjects Algorithms
Computer Simulation
Degradation
Detector response
Detectors
Error correction
Fourier rebinning (FORE)
fully three-dimensional (3-D) positron emission tomography (PET)
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Models, Biological
Neoplasms
Numerical Analysis, Computer-Assisted
Phantoms, Imaging
Positron emission tomography
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
Reproducibility of Results
Scattering
Sensitivity and Specificity
Size measurement
Spatial resolution
Studies
system model
system response
Whole Body Imaging - methods
Whole-body PET
title Modeling and incorporation of system response functions in 3-D whole body PET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20incorporation%20of%20system%20response%20functions%20in%203-D%20whole%20body%20PET&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Alessio,%20A.M.&rft.date=2006-07-01&rft.volume=25&rft.issue=7&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2006.873222&rft_dat=%3Cproquest_cross%3E20303384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865654508&rft_id=info:pmid/16827484&rft_ieee_id=1644799&rfr_iscdi=true