Loading…
Modeling and incorporation of system response functions in 3-D whole body PET
Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more ge...
Saved in:
Published in: | IEEE transactions on medical imaging 2006-07, Vol.25 (7), p.828-837 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533 |
container_end_page | 837 |
container_issue | 7 |
container_start_page | 828 |
container_title | IEEE transactions on medical imaging |
container_volume | 25 |
creator | Alessio, A.M. Kinahan, P.E. Lewellen, T.K. |
description | Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter |
doi_str_mv | 10.1109/TMI.2006.873222 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68620973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1644799</ieee_id><sourcerecordid>20303384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</originalsourceid><addsrcrecordid>eNqF0UtLAzEUBeAgitbH2oUgwYWupiY3ySRZim-w6KKCuzBNMjoyndSkg_Tfm9KC4kJXWZzvXrg5CB1SMqSU6PPx6H4IhJRDJRkAbKABFUIVIPjLJhoQkKrIKeyg3ZTeCaFcEL2NdmipQHLFB2g0Cs63TfeKq87hprMhzkKs5k3ocKhxWqS5n-Lo0yx0yeO67-wyS5liVlzhz7fQejwJboGfrsf7aKuu2uQP1u8eer65Hl_eFQ-Pt_eXFw-F5ZLOC1sDE85NJPVacE2hItRKqEsJZS0nDEhVaZtzYTVhtVOSOxCOCOZBUsHYHjpb7Z3F8NH7NDfTJlnftlXnQ59MHqCaMglZnv4pS1UC0ZL9C4EwwpjiGZ78gu-hj10-16hSlCJ_scrofIVsDClFX5tZbKZVXBhKzLI5k5szy-bMqrk8cbxe20-m3n37dVUZHK1A473_EXMutWZfzIyaGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865654508</pqid></control><display><type>article</type><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><source>IEEE Xplore (Online service)</source><creator>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</creator><creatorcontrib>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</creatorcontrib><description>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2006.873222</identifier><identifier>PMID: 16827484</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computer Simulation ; Degradation ; Detector response ; Detectors ; Error correction ; Fourier rebinning (FORE) ; fully three-dimensional (3-D) positron emission tomography (PET) ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Models, Biological ; Neoplasms ; Numerical Analysis, Computer-Assisted ; Phantoms, Imaging ; Positron emission tomography ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; Reproducibility of Results ; Scattering ; Sensitivity and Specificity ; Size measurement ; Spatial resolution ; Studies ; system model ; system response ; Whole Body Imaging - methods ; Whole-body PET</subject><ispartof>IEEE transactions on medical imaging, 2006-07, Vol.25 (7), p.828-837</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</citedby><cites>FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1644799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16827484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessio, A.M.</creatorcontrib><creatorcontrib>Kinahan, P.E.</creatorcontrib><creatorcontrib>Lewellen, T.K.</creatorcontrib><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Degradation</subject><subject>Detector response</subject><subject>Detectors</subject><subject>Error correction</subject><subject>Fourier rebinning (FORE)</subject><subject>fully three-dimensional (3-D) positron emission tomography (PET)</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Models, Biological</subject><subject>Neoplasms</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Phantoms, Imaging</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>Reproducibility of Results</subject><subject>Scattering</subject><subject>Sensitivity and Specificity</subject><subject>Size measurement</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>system model</subject><subject>system response</subject><subject>Whole Body Imaging - methods</subject><subject>Whole-body PET</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLAzEUBeAgitbH2oUgwYWupiY3ySRZim-w6KKCuzBNMjoyndSkg_Tfm9KC4kJXWZzvXrg5CB1SMqSU6PPx6H4IhJRDJRkAbKABFUIVIPjLJhoQkKrIKeyg3ZTeCaFcEL2NdmipQHLFB2g0Cs63TfeKq87hprMhzkKs5k3ocKhxWqS5n-Lo0yx0yeO67-wyS5liVlzhz7fQejwJboGfrsf7aKuu2uQP1u8eer65Hl_eFQ-Pt_eXFw-F5ZLOC1sDE85NJPVacE2hItRKqEsJZS0nDEhVaZtzYTVhtVOSOxCOCOZBUsHYHjpb7Z3F8NH7NDfTJlnftlXnQ59MHqCaMglZnv4pS1UC0ZL9C4EwwpjiGZ78gu-hj10-16hSlCJ_scrofIVsDClFX5tZbKZVXBhKzLI5k5szy-bMqrk8cbxe20-m3n37dVUZHK1A473_EXMutWZfzIyaGw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Alessio, A.M.</creator><creator>Kinahan, P.E.</creator><creator>Lewellen, T.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Modeling and incorporation of system response functions in 3-D whole body PET</title><author>Alessio, A.M. ; Kinahan, P.E. ; Lewellen, T.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Degradation</topic><topic>Detector response</topic><topic>Detectors</topic><topic>Error correction</topic><topic>Fourier rebinning (FORE)</topic><topic>fully three-dimensional (3-D) positron emission tomography (PET)</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Models, Biological</topic><topic>Neoplasms</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Phantoms, Imaging</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>Reproducibility of Results</topic><topic>Scattering</topic><topic>Sensitivity and Specificity</topic><topic>Size measurement</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>system model</topic><topic>system response</topic><topic>Whole Body Imaging - methods</topic><topic>Whole-body PET</topic><toplevel>online_resources</toplevel><creatorcontrib>Alessio, A.M.</creatorcontrib><creatorcontrib>Kinahan, P.E.</creatorcontrib><creatorcontrib>Lewellen, T.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessio, A.M.</au><au>Kinahan, P.E.</au><au>Lewellen, T.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and incorporation of system response functions in 3-D whole body PET</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>25</volume><issue>7</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Appropriate application of spatially variant system models can correct for degraded resolution response and mispositioning errors. This paper explores the detector blurring component of the system model for a whole body positron emission tomography (PET) system and extends this factor into a more general system response function to account for other system effects including the influence of Fourier rebinning (FORE). We model the system response function as a three-dimensional (3-D) function that blurs in the radial and axial dimension and is spatially variant in radial location. This function is derived from Monte Carlo simulations and incorporates inter-crystal scatter, crystal penetration, and the blurring due to the FORE algorithm. The improved system model is applied in a modified ordered subsets expectation maximization (OSEM) algorithm to reconstruct images from rebinned, fully 3-D PET data. The proposed method effectively removes the spatial variance in the resolution response, as shown in simulations of point sources. Furthermore, simulation and measured studies show the proposed method improves quantitative accuracy with a reduction in tumor bias compared to conventional OSEM on the order of 10%-30% depending on tumor size and smoothing parameter</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16827484</pmid><doi>10.1109/TMI.2006.873222</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2006-07, Vol.25 (7), p.828-837 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_68620973 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Computer Simulation Degradation Detector response Detectors Error correction Fourier rebinning (FORE) fully three-dimensional (3-D) positron emission tomography (PET) Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image reconstruction Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Models, Biological Neoplasms Numerical Analysis, Computer-Assisted Phantoms, Imaging Positron emission tomography Positron-Emission Tomography - instrumentation Positron-Emission Tomography - methods Reproducibility of Results Scattering Sensitivity and Specificity Size measurement Spatial resolution Studies system model system response Whole Body Imaging - methods Whole-body PET |
title | Modeling and incorporation of system response functions in 3-D whole body PET |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20incorporation%20of%20system%20response%20functions%20in%203-D%20whole%20body%20PET&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Alessio,%20A.M.&rft.date=2006-07-01&rft.volume=25&rft.issue=7&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2006.873222&rft_dat=%3Cproquest_cross%3E20303384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-cf235ddb71e954912a01c72f6726f7b320aa9cdb75c903fd874d25d053e271533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865654508&rft_id=info:pmid/16827484&rft_ieee_id=1644799&rfr_iscdi=true |