Loading…
Reactive oxygen species, dietary restriction and neurotrophic factors in age‐related loss of myenteric neurons
Summary We have studied the mechanisms underlying nonpathological age‐related neuronal cell death. Fifty per cent of neurons in the rat enteric nervous system are lost between 12 and 18 months of age in ad libitum (AL) fed rats. Caloric restriction (CR) protects almost entirely against this neuron l...
Saved in:
Published in: | Aging cell 2006-06, Vol.5 (3), p.247-257 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
We have studied the mechanisms underlying nonpathological age‐related neuronal cell death. Fifty per cent of neurons in the rat enteric nervous system are lost between 12 and 18 months of age in ad libitum (AL) fed rats. Caloric restriction (CR) protects almost entirely against this neuron loss. Using the ROS‐sensitive dyes, dihydrorhodamine (DHR) and 2‐[6‐(4′‐hydroxy)phenoxy‐3H‐xanthen‐3‐on‐9‐yl]benzoic acid (HPF) in vitro, we show that the onset of cell death is linked with elevated intraneuronal levels of reactive oxygen species (ROS). Treatment with the neurotrophic factors NT3 and GDNF enhances neuronal antioxidant defence in CR rats at 12–15 months and 24 months but not in adult or aged AL‐fed animals. To examine the link between elevated ROS and neuronal cell death, we assessed apoptotic cell death following in vitro treatment with the redox‐cycling drug, menadione. Menadione fails to increase apoptosis in 6‐month neurons. However, in 12–15mAL fed rats, when age‐related cell death begins, menadione induces a 7‐ to 15‐fold increase in the proportion of apoptotic neurons. CR protects age‐matched neurons against ROS‐induced apoptosis. Treatment with neurotrophic factors, in particular GDNF, rescues neurons from menadione‐induced cell death, but only in 12–15mCR animals. We hypothesize that CR enhances antioxidant defence through neurotrophic factor signalling, thereby reducing age‐related increases in neuronal ROS levels and in ROS‐induced cell death. |
---|---|
ISSN: | 1474-9718 1474-9726 |
DOI: | 10.1111/j.1474-9726.2006.00214.x |