Loading…
FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2
Patients with small cell lung cancer (SCLC) die because of chemoresistance. Fibroblast growth factor-2 (FGF-2) increases the expression of antiapoptotic proteins, XIAP and Bcl-X(L), and triggers chemoresistance in SCLC cells. Here we show that these effects are mediated through the formation of a sp...
Saved in:
Published in: | The EMBO journal 2006-07, Vol.25 (13), p.3078-3088 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Patients with small cell lung cancer (SCLC) die because of chemoresistance. Fibroblast growth factor-2 (FGF-2) increases the expression of antiapoptotic proteins, XIAP and Bcl-X(L), and triggers chemoresistance in SCLC cells. Here we show that these effects are mediated through the formation of a specific multiprotein complex comprising B-Raf, PKCepsilon and S6K2. S6K1, Raf-1 and other PKC isoforms do not form similar complexes. RNAi-mediated downregulation of B-Raf, PKCepsilon or S6K2 abolishes FGF-2-mediated survival. In contrast, overexpression of PKCepsilon increases XIAP and Bcl-X(L) levels and chemoresistance in SCLC cells. In a tetracycline-inducible system, increased S6K2 kinase activity triggers upregulation of XIAP, Bcl-X(L) and prosurvival effects. However, increased S6K1 kinase activity has no such effect. Thus, S6K2 but not S6K1 mediates prosurvival/chemoresistance signalling. |
---|---|
ISSN: | 0261-4189 |