Loading…

Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes

The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2005-11, Vol.337 (1), p.95-103
Main Authors: Fernandes, A.R., Mira, N.P., Vargas, R.C., Canelhas, I., Sá-Correia, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473
cites cdi_FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473
container_end_page 103
container_issue 1
container_start_page 95
container_title Biochemical and biophysical research communications
container_volume 337
creator Fernandes, A.R.
Mira, N.P.
Vargas, R.C.
Canelhas, I.
Sá-Correia, I.
description The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more rapid adaptation of a yeast cell population to several weak acid food preservatives. Maximal protection is exerted against the short-chain length acetic or propionic acids. The transcription of nine Haa1p-target genes, many of which are predicted to encode membrane proteins of unknown or poorly characterized function, is activated under weak acid stress. The Haa1-regulated genes required for a more rapid yeast adaptation to weak acids include TPO2 and TPO3, encoding two predicted plasma membrane multidrug transporters of the major facilitator superfamily, and YGP1, encoding a poorly characterized cell wall glycoprotein. The acetic acid-induced prolongation of the lag phase of unadapted cell populations lacking HAA1 or TPO3, compared with wild-type population, was correlated with the level of the acid accumulated into the stressed cells.
doi_str_mv 10.1016/j.bbrc.2005.09.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68639965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X05020048</els_id><sourcerecordid>17409638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQC0EokvhD3BAPnFLGGcdO5a4oIp-SJU40ErcrIk9br1kk2B7F_Xfk2VX4lZOM4c37zCPsfcCagFCfdrUfZ9c3QC0NZgaBLxgKwEGqkaAfMlWAKCqxogfZ-xNzhsAIaQyr9mZUEIrbfSK5e_o3COmafvkKHNHifYxRySOHueCJU4jLxP_TfiTo4s-8zjup2G_wOWReEk4Zpfi_BcM6MqU-DWimDmO_rhViR52Axby_IFGym_Zq4BDpnenec7uL7_eXVxXt9-ubi6-3FZOtqJUWrcaJLRyLYUxSgonQwet7jrRBfQ-BN8Y5fpeBqNNIAzSUdAtuqBAS70-Zx-P3jlNv3aUi93G7GgYcKRpl63q1HoRt_8FhZZg1LpbwOYIujTlnCjYOcUtpicrwB6a2I09NLGHJhaMXZosRx9O9l2_Jf_v5BRhAT4fAVqesY-UbHaRRkc-JnLF-ik-5_8Dh8eeuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17409638</pqid></control><display><type>article</type><title>Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Fernandes, A.R. ; Mira, N.P. ; Vargas, R.C. ; Canelhas, I. ; Sá-Correia, I.</creator><creatorcontrib>Fernandes, A.R. ; Mira, N.P. ; Vargas, R.C. ; Canelhas, I. ; Sá-Correia, I.</creatorcontrib><description>The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more rapid adaptation of a yeast cell population to several weak acid food preservatives. Maximal protection is exerted against the short-chain length acetic or propionic acids. The transcription of nine Haa1p-target genes, many of which are predicted to encode membrane proteins of unknown or poorly characterized function, is activated under weak acid stress. The Haa1-regulated genes required for a more rapid yeast adaptation to weak acids include TPO2 and TPO3, encoding two predicted plasma membrane multidrug transporters of the major facilitator superfamily, and YGP1, encoding a poorly characterized cell wall glycoprotein. The acetic acid-induced prolongation of the lag phase of unadapted cell populations lacking HAA1 or TPO3, compared with wild-type population, was correlated with the level of the acid accumulated into the stressed cells.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2005.09.010</identifier><identifier>PMID: 16176797</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetic Acid - metabolism ; Adaptation, Physiological ; Antifungal Agents - pharmacology ; Carboxylic Acids - pharmacology ; Food Preservatives - pharmacology ; Gene Deletion ; Gene Expression Regulation, Fungal ; HAA1 ; Membrane Transport Proteins - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Stress response ; TPO2 ; TPO3 ; Trans-Activators - genetics ; Trans-Activators - physiology ; Transcription Factors ; Transcriptional Activation ; Weak acid resistance and adaptation ; Yeast ; YGP1</subject><ispartof>Biochemical and biophysical research communications, 2005-11, Vol.337 (1), p.95-103</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473</citedby><cites>FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16176797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, A.R.</creatorcontrib><creatorcontrib>Mira, N.P.</creatorcontrib><creatorcontrib>Vargas, R.C.</creatorcontrib><creatorcontrib>Canelhas, I.</creatorcontrib><creatorcontrib>Sá-Correia, I.</creatorcontrib><title>Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more rapid adaptation of a yeast cell population to several weak acid food preservatives. Maximal protection is exerted against the short-chain length acetic or propionic acids. The transcription of nine Haa1p-target genes, many of which are predicted to encode membrane proteins of unknown or poorly characterized function, is activated under weak acid stress. The Haa1-regulated genes required for a more rapid yeast adaptation to weak acids include TPO2 and TPO3, encoding two predicted plasma membrane multidrug transporters of the major facilitator superfamily, and YGP1, encoding a poorly characterized cell wall glycoprotein. The acetic acid-induced prolongation of the lag phase of unadapted cell populations lacking HAA1 or TPO3, compared with wild-type population, was correlated with the level of the acid accumulated into the stressed cells.</description><subject>Acetic Acid - metabolism</subject><subject>Adaptation, Physiological</subject><subject>Antifungal Agents - pharmacology</subject><subject>Carboxylic Acids - pharmacology</subject><subject>Food Preservatives - pharmacology</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Fungal</subject><subject>HAA1</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Stress response</subject><subject>TPO2</subject><subject>TPO3</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - physiology</subject><subject>Transcription Factors</subject><subject>Transcriptional Activation</subject><subject>Weak acid resistance and adaptation</subject><subject>Yeast</subject><subject>YGP1</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQQC0EokvhD3BAPnFLGGcdO5a4oIp-SJU40ErcrIk9br1kk2B7F_Xfk2VX4lZOM4c37zCPsfcCagFCfdrUfZ9c3QC0NZgaBLxgKwEGqkaAfMlWAKCqxogfZ-xNzhsAIaQyr9mZUEIrbfSK5e_o3COmafvkKHNHifYxRySOHueCJU4jLxP_TfiTo4s-8zjup2G_wOWReEk4Zpfi_BcM6MqU-DWimDmO_rhViR52Axby_IFGym_Zq4BDpnenec7uL7_eXVxXt9-ubi6-3FZOtqJUWrcaJLRyLYUxSgonQwet7jrRBfQ-BN8Y5fpeBqNNIAzSUdAtuqBAS70-Zx-P3jlNv3aUi93G7GgYcKRpl63q1HoRt_8FhZZg1LpbwOYIujTlnCjYOcUtpicrwB6a2I09NLGHJhaMXZosRx9O9l2_Jf_v5BRhAT4fAVqesY-UbHaRRkc-JnLF-ik-5_8Dh8eeuw</recordid><startdate>20051111</startdate><enddate>20051111</enddate><creator>Fernandes, A.R.</creator><creator>Mira, N.P.</creator><creator>Vargas, R.C.</creator><creator>Canelhas, I.</creator><creator>Sá-Correia, I.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20051111</creationdate><title>Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes</title><author>Fernandes, A.R. ; Mira, N.P. ; Vargas, R.C. ; Canelhas, I. ; Sá-Correia, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acetic Acid - metabolism</topic><topic>Adaptation, Physiological</topic><topic>Antifungal Agents - pharmacology</topic><topic>Carboxylic Acids - pharmacology</topic><topic>Food Preservatives - pharmacology</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Fungal</topic><topic>HAA1</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Stress response</topic><topic>TPO2</topic><topic>TPO3</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - physiology</topic><topic>Transcription Factors</topic><topic>Transcriptional Activation</topic><topic>Weak acid resistance and adaptation</topic><topic>Yeast</topic><topic>YGP1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, A.R.</creatorcontrib><creatorcontrib>Mira, N.P.</creatorcontrib><creatorcontrib>Vargas, R.C.</creatorcontrib><creatorcontrib>Canelhas, I.</creatorcontrib><creatorcontrib>Sá-Correia, I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, A.R.</au><au>Mira, N.P.</au><au>Vargas, R.C.</au><au>Canelhas, I.</au><au>Sá-Correia, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2005-11-11</date><risdate>2005</risdate><volume>337</volume><issue>1</issue><spage>95</spage><epage>103</epage><pages>95-103</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more rapid adaptation of a yeast cell population to several weak acid food preservatives. Maximal protection is exerted against the short-chain length acetic or propionic acids. The transcription of nine Haa1p-target genes, many of which are predicted to encode membrane proteins of unknown or poorly characterized function, is activated under weak acid stress. The Haa1-regulated genes required for a more rapid yeast adaptation to weak acids include TPO2 and TPO3, encoding two predicted plasma membrane multidrug transporters of the major facilitator superfamily, and YGP1, encoding a poorly characterized cell wall glycoprotein. The acetic acid-induced prolongation of the lag phase of unadapted cell populations lacking HAA1 or TPO3, compared with wild-type population, was correlated with the level of the acid accumulated into the stressed cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16176797</pmid><doi>10.1016/j.bbrc.2005.09.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2005-11, Vol.337 (1), p.95-103
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_68639965
source ScienceDirect Freedom Collection 2022-2024
subjects Acetic Acid - metabolism
Adaptation, Physiological
Antifungal Agents - pharmacology
Carboxylic Acids - pharmacology
Food Preservatives - pharmacology
Gene Deletion
Gene Expression Regulation, Fungal
HAA1
Membrane Transport Proteins - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - physiology
Stress response
TPO2
TPO3
Trans-Activators - genetics
Trans-Activators - physiology
Transcription Factors
Transcriptional Activation
Weak acid resistance and adaptation
Yeast
YGP1
title Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saccharomyces%20cerevisiae%20adaptation%20to%20weak%20acids%20involves%20the%20transcription%20factor%20Haa1p%20and%20Haa1p-regulated%20genes&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Fernandes,%20A.R.&rft.date=2005-11-11&rft.volume=337&rft.issue=1&rft.spage=95&rft.epage=103&rft.pages=95-103&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2005.09.010&rft_dat=%3Cproquest_cross%3E17409638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-77570405434199641c4f80578818faddffd296cbb4f979feaf4cef75acf607473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17409638&rft_id=info:pmid/16176797&rfr_iscdi=true