Loading…

Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation

Transcranial direct current stimulation (tDCS) is a non-invasive powerful method to modulate brain activity. It can enhance motor learning and working memory in healthy subjects. To investigate the effects of anodal tDCS (1 mA, 20 min) of the dominant and non-dominant primary motor cortex (M1) on ha...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience letters 2006-08, Vol.404 (1), p.232-236
Main Authors: Boggio, Paulo S., Castro, Letícia O., Savagim, Edna A., Braite, Renata, Cruz, Viviane C., Rocha, Renata R., Rigonatti, Sergio P., Silva, Maria T.A., Fregni, Felipe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transcranial direct current stimulation (tDCS) is a non-invasive powerful method to modulate brain activity. It can enhance motor learning and working memory in healthy subjects. To investigate the effects of anodal tDCS (1 mA, 20 min) of the dominant and non-dominant primary motor cortex (M1) on hand motor performance in healthy right-handed volunteers, healthy subjects underwent one session of both sham and active anodal stimulation of the non-dominant or dominant primary motor cortex. A blinded rater assessed motor function using the Jebsen Taylor Hand Function Test. For the non-dominant hand, active tDCS was able to improve motor function significantly—there was a significant interaction between time and condition of stimulation ( p = 0.003). Post hoc tests showed a significant enhancement of JTT performance after 1 mA anodal tDCS of M1 (mean improvement of 9.41%, p = 0.0004), but not after sham tDCS (mean improvement of 1.3%, p = 0.84). For the dominant hand, however, neither active nor sham tDCS resulted in a significant change in motor performance. Our findings show that anodal tDCS of the non-dominant primary motor cortex results in motor function enhancement and thus confirm and extend the notion that tDCS can change behavior. We speculate that the under-use of the non-dominant hand with its associated consequences in cortical plasticity might be one of the reasons to explain motor performance enhancement in the non-dominant hand only.
ISSN:0304-3940
1872-7972
DOI:10.1016/j.neulet.2006.05.051