Loading…

Biomolecular interaction analysis in functional proteomics

To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail....

Full description

Saved in:
Bibliographic Details
Published in:Journal of Neural Transmission 2006-08, Vol.113 (8), p.1015-1032
Main Authors: Moll, D, Prinz, A, Gesellchen, F, Drewianka, S, Zimmermann, B, Herberg, F W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453
cites cdi_FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453
container_end_page 1032
container_issue 8
container_start_page 1015
container_title Journal of Neural Transmission
container_volume 113
creator Moll, D
Prinz, A
Gesellchen, F
Drewianka, S
Zimmermann, B
Herberg, F W
description To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail. We used the cAMP dependent protein kinase (PKA) as a model system for the binding analysis between small natural ligands, cAMP and cAMP analogues, with their physiological interaction partner, the regulatory subunit of PKA. BIA comprises a variety of methods based on physics, biochemistry and molecular biology. Here we compared side by side real time SPR (surface plasmon resonance, Biacore), a bead based assay (AlphaScreen), a fluorescence based method (Fluorescence polarisation) and ITC (isothermal titration calorimetry). These in vitro methods were complemented by an in cell reporter assay, BRET(2) (bioluminescence resonance energy transfer), allowing to test the effects of cAMP analogues in living cells.
doi_str_mv 10.1007/s00702-006-0515-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68658126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19528078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMotlZ_gBsZXLiL5iV5mYw7LX5BwY2uQ5omMGU-ajKz6L83tQXBjZsELic37x1CLoHdAmPlXcoH45QxRRkCUjwiU5ACKUgljsmUCcZohUpOyFlKa8YYQKlPyQSUFqh0NSX3j3Xf9o13Y2NjUXeDj9YNdd8VtrPNNtUph0UYu5_QNsUm9oPv29qlc3ISbJP8xeGekc_np4_5K128v7zNHxbUCSwH6mwFzHrJERxHr1BbXK0E5y5AsJXyS1wK70ulgwSF0qIICFKCCFB6iWJGbva9-euv0afBtHVyvmls5_sxGaVzJ3D1LwgVcs1KncHrP-C6H2PeLhmeBQnBK8gQ7CEX-5SiD2YT69bGrQFmdvrNXr_J-s1Ov9mNenUoHpetX_2-OPgW3xOyfyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217833291</pqid></control><display><type>article</type><title>Biomolecular interaction analysis in functional proteomics</title><source>Springer Link</source><creator>Moll, D ; Prinz, A ; Gesellchen, F ; Drewianka, S ; Zimmermann, B ; Herberg, F W</creator><creatorcontrib>Moll, D ; Prinz, A ; Gesellchen, F ; Drewianka, S ; Zimmermann, B ; Herberg, F W</creatorcontrib><description>To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail. We used the cAMP dependent protein kinase (PKA) as a model system for the binding analysis between small natural ligands, cAMP and cAMP analogues, with their physiological interaction partner, the regulatory subunit of PKA. BIA comprises a variety of methods based on physics, biochemistry and molecular biology. Here we compared side by side real time SPR (surface plasmon resonance, Biacore), a bead based assay (AlphaScreen), a fluorescence based method (Fluorescence polarisation) and ITC (isothermal titration calorimetry). These in vitro methods were complemented by an in cell reporter assay, BRET(2) (bioluminescence resonance energy transfer), allowing to test the effects of cAMP analogues in living cells.</description><identifier>ISSN: 0300-9564</identifier><identifier>EISSN: 1435-1463</identifier><identifier>DOI: 10.1007/s00702-006-0515-5</identifier><identifier>PMID: 16835689</identifier><identifier>CODEN: JNTRF3</identifier><language>eng</language><publisher>Austria: Springer Nature B.V</publisher><subject>Animals ; Biological Assay ; Brain - metabolism ; Brain Chemistry ; Calorimetry ; Cercopithecus aethiops ; COS Cells ; Cyclic AMP - analogs &amp; derivatives ; Cyclic AMP-Dependent Protein Kinases - analysis ; Energy Transfer ; Fluorescence Polarization ; Humans ; Luminescent Measurements ; Proteomics - methods ; Surface Plasmon Resonance</subject><ispartof>Journal of Neural Transmission, 2006-08, Vol.113 (8), p.1015-1032</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453</citedby><cites>FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16835689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moll, D</creatorcontrib><creatorcontrib>Prinz, A</creatorcontrib><creatorcontrib>Gesellchen, F</creatorcontrib><creatorcontrib>Drewianka, S</creatorcontrib><creatorcontrib>Zimmermann, B</creatorcontrib><creatorcontrib>Herberg, F W</creatorcontrib><title>Biomolecular interaction analysis in functional proteomics</title><title>Journal of Neural Transmission</title><addtitle>J Neural Transm (Vienna)</addtitle><description>To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail. We used the cAMP dependent protein kinase (PKA) as a model system for the binding analysis between small natural ligands, cAMP and cAMP analogues, with their physiological interaction partner, the regulatory subunit of PKA. BIA comprises a variety of methods based on physics, biochemistry and molecular biology. Here we compared side by side real time SPR (surface plasmon resonance, Biacore), a bead based assay (AlphaScreen), a fluorescence based method (Fluorescence polarisation) and ITC (isothermal titration calorimetry). These in vitro methods were complemented by an in cell reporter assay, BRET(2) (bioluminescence resonance energy transfer), allowing to test the effects of cAMP analogues in living cells.</description><subject>Animals</subject><subject>Biological Assay</subject><subject>Brain - metabolism</subject><subject>Brain Chemistry</subject><subject>Calorimetry</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Cyclic AMP - analogs &amp; derivatives</subject><subject>Cyclic AMP-Dependent Protein Kinases - analysis</subject><subject>Energy Transfer</subject><subject>Fluorescence Polarization</subject><subject>Humans</subject><subject>Luminescent Measurements</subject><subject>Proteomics - methods</subject><subject>Surface Plasmon Resonance</subject><issn>0300-9564</issn><issn>1435-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMotlZ_gBsZXLiL5iV5mYw7LX5BwY2uQ5omMGU-ajKz6L83tQXBjZsELic37x1CLoHdAmPlXcoH45QxRRkCUjwiU5ACKUgljsmUCcZohUpOyFlKa8YYQKlPyQSUFqh0NSX3j3Xf9o13Y2NjUXeDj9YNdd8VtrPNNtUph0UYu5_QNsUm9oPv29qlc3ISbJP8xeGekc_np4_5K128v7zNHxbUCSwH6mwFzHrJERxHr1BbXK0E5y5AsJXyS1wK70ulgwSF0qIICFKCCFB6iWJGbva9-euv0afBtHVyvmls5_sxGaVzJ3D1LwgVcs1KncHrP-C6H2PeLhmeBQnBK8gQ7CEX-5SiD2YT69bGrQFmdvrNXr_J-s1Ov9mNenUoHpetX_2-OPgW3xOyfyI</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Moll, D</creator><creator>Prinz, A</creator><creator>Gesellchen, F</creator><creator>Drewianka, S</creator><creator>Zimmermann, B</creator><creator>Herberg, F W</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200608</creationdate><title>Biomolecular interaction analysis in functional proteomics</title><author>Moll, D ; Prinz, A ; Gesellchen, F ; Drewianka, S ; Zimmermann, B ; Herberg, F W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological Assay</topic><topic>Brain - metabolism</topic><topic>Brain Chemistry</topic><topic>Calorimetry</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Cyclic AMP - analogs &amp; derivatives</topic><topic>Cyclic AMP-Dependent Protein Kinases - analysis</topic><topic>Energy Transfer</topic><topic>Fluorescence Polarization</topic><topic>Humans</topic><topic>Luminescent Measurements</topic><topic>Proteomics - methods</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moll, D</creatorcontrib><creatorcontrib>Prinz, A</creatorcontrib><creatorcontrib>Gesellchen, F</creatorcontrib><creatorcontrib>Drewianka, S</creatorcontrib><creatorcontrib>Zimmermann, B</creatorcontrib><creatorcontrib>Herberg, F W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Neural Transmission</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moll, D</au><au>Prinz, A</au><au>Gesellchen, F</au><au>Drewianka, S</au><au>Zimmermann, B</au><au>Herberg, F W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular interaction analysis in functional proteomics</atitle><jtitle>Journal of Neural Transmission</jtitle><addtitle>J Neural Transm (Vienna)</addtitle><date>2006-08</date><risdate>2006</risdate><volume>113</volume><issue>8</issue><spage>1015</spage><epage>1032</epage><pages>1015-1032</pages><issn>0300-9564</issn><eissn>1435-1463</eissn><coden>JNTRF3</coden><abstract>To understand the function of highly complex eukaryotic tissues like the human brain, in depth knowledge about cellular protein networks is required. Biomolecular interaction analysis (BIA), as a part of functional proteomics, aims to quantify interaction patterns within a protein network in detail. We used the cAMP dependent protein kinase (PKA) as a model system for the binding analysis between small natural ligands, cAMP and cAMP analogues, with their physiological interaction partner, the regulatory subunit of PKA. BIA comprises a variety of methods based on physics, biochemistry and molecular biology. Here we compared side by side real time SPR (surface plasmon resonance, Biacore), a bead based assay (AlphaScreen), a fluorescence based method (Fluorescence polarisation) and ITC (isothermal titration calorimetry). These in vitro methods were complemented by an in cell reporter assay, BRET(2) (bioluminescence resonance energy transfer), allowing to test the effects of cAMP analogues in living cells.</abstract><cop>Austria</cop><pub>Springer Nature B.V</pub><pmid>16835689</pmid><doi>10.1007/s00702-006-0515-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-9564
ispartof Journal of Neural Transmission, 2006-08, Vol.113 (8), p.1015-1032
issn 0300-9564
1435-1463
language eng
recordid cdi_proquest_miscellaneous_68658126
source Springer Link
subjects Animals
Biological Assay
Brain - metabolism
Brain Chemistry
Calorimetry
Cercopithecus aethiops
COS Cells
Cyclic AMP - analogs & derivatives
Cyclic AMP-Dependent Protein Kinases - analysis
Energy Transfer
Fluorescence Polarization
Humans
Luminescent Measurements
Proteomics - methods
Surface Plasmon Resonance
title Biomolecular interaction analysis in functional proteomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20interaction%20analysis%20in%20functional%20proteomics&rft.jtitle=Journal%20of%20Neural%20Transmission&rft.au=Moll,%20D&rft.date=2006-08&rft.volume=113&rft.issue=8&rft.spage=1015&rft.epage=1032&rft.pages=1015-1032&rft.issn=0300-9564&rft.eissn=1435-1463&rft.coden=JNTRF3&rft_id=info:doi/10.1007/s00702-006-0515-5&rft_dat=%3Cproquest_cross%3E19528078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-ca910ae4251c25e658a5dd322cf1fa96eb5b3ee768f41654a53f514413f17e453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217833291&rft_id=info:pmid/16835689&rfr_iscdi=true