Loading…

The Polycomb Group Protein EZH2 Is Required for Mammalian Circadian Clock Function

We examined the importance of histone methylation by the polycomb group proteins in the mouse circadian clock mechanism. Endogenous EZH2, a polycomb group enzyme that methylates lysine 27 on histone H3, co-immunoprecipitates with CLOCK and BMAL1 throughout the circadian cycle in liver nuclear extrac...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-07, Vol.281 (30), p.21209-21215
Main Authors: Etchegaray, Jean-Pierre, Yang, Xiaoming, DeBruyne, Jason P., Peters, Antoine H.F.M., Weaver, David R., Jenuwein, Thomas, Reppert, Steven M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examined the importance of histone methylation by the polycomb group proteins in the mouse circadian clock mechanism. Endogenous EZH2, a polycomb group enzyme that methylates lysine 27 on histone H3, co-immunoprecipitates with CLOCK and BMAL1 throughout the circadian cycle in liver nuclear extracts. Chromatin immunoprecipitation revealed EZH2 binding and di- and trimethylation of H3K27 on both the Period 1 and Period 2 promoters. A role of EZH2 in cryptochrome-mediated transcriptional repression of the clockwork was supported by overexpression and RNA interference studies. Serum-induced circadian rhythms in NIH 3T3 cells in culture were disrupted by transfection of an RNA interfering sequence targeting EZH2. These results indicate that EZH2 is important for the maintenance of circadian rhythms and extend the activity of the polycomb group proteins to the core clockwork mechanism of mammals.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M603722200