Loading…
DJ-1 Transcriptionally Up-regulates the Human Tyrosine Hydroxylase by Inhibiting the Sumoylation of Pyrimidine Tract-binding Protein-associated Splicing Factor
Loss-of-function mutations in DJ-1 cause a subset of familial Parkinson disease (PD). However, the mechanism underlying the selective vulnerability in dopaminergic pathway due to the inactivation of DJ-1 is unclear. Previously, we have reported that DJ-1 is a neuroprotective transcriptional co-activ...
Saved in:
Published in: | The Journal of biological chemistry 2006-07, Vol.281 (30), p.20940-20948 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Loss-of-function mutations in DJ-1 cause a subset of familial Parkinson disease (PD). However, the mechanism underlying the selective vulnerability in dopaminergic pathway due to the inactivation of DJ-1 is unclear. Previously, we have reported that DJ-1 is a neuroprotective transcriptional co-activator interacting with the transcriptional co-repressor pyrimidine tract-binding protein-associated splicing factor (PSF). Here we show that DJ-1 and PSF bind and regulate the human tyrosine hydroxylase (TH) promoter. Inactivation of DJ-1 by small interference RNA (siRNA) results in decreased TH expression and l-DOPA production in human dopaminergic cell lines. Consistent with its role as a transcriptional regulator, DJ-1 specifically suppresses the global SUMO-1 modification. High molecular weight sumoylated protein species, including PSF, accumulate in the lymphoblast cells from the patients carrying pathogenic DJ-1 mutations. DJ-1 elevates the TH expression by inhibiting the sumoylation of PSF and preventing its sumoylation-dependent recruitment of histone deacetylase 1. Furthermore, siRNA silencing of DJ-1 decreases the acetylation of TH promoter-bound histones, and histone deacetylase inhibitors restore the DJ-1 siRNA-induced repression of TH. Therefore, our results suggest DJ-1 as a regulator of protein sumoylation and directly link the loss of DJ-1 expression and transcriptional dysfunction to impaired dopamine synthesis. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M601935200 |