Loading…

Giant-Block Twist Grain Boundary Smectic Phases

Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of p...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-10, Vol.102 (40), p.14191-14196
Main Authors: Fernsler, J., Hough, L., R.-F. Shao, MacLennan, J. E., Navailles, L., Brunet, M., Madhusudana, N. V., Mondain-Monval, O., Boyer, C., Zasadzinski, J., Rego, J. A., Walba, D. M., Clark, N. A., Lubensky, Tom C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3
cites cdi_FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3
container_end_page 14196
container_issue 40
container_start_page 14191
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Fernsler, J.
Hough, L.
R.-F. Shao
MacLennan, J. E.
Navailles, L.
Brunet, M.
Madhusudana, N. V.
Mondain-Monval, O.
Boyer, C.
Zasadzinski, J.
Rego, J. A.
Walba, D. M.
Clark, N. A.
Lubensky, Tom C.
description Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of planar layers of thickness$l_{b}>200$nm terminated by GBs that are sharp, mediating large angular jumps in layer orientation between blocks (60° < Δ < 90°), and lubricating the thermal contraction of the smectic layers within the blocks. This phenomenology is well described by basic theoretical models applicable in the limit that the ratio of molecular tilt penetration length-to-layer coherence length is large, and featuring GBs in which smectic ordering is weak, approaching thin, melted (nematic-like) walls. In this limit the energy cost of change of the block size is small, leading to a wide variation of block dimension, depending on preparation conditions. The models also account for the temperature dependence of the TGB helix pitch.
doi_str_mv 10.1073/pnas.0500664102
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68674701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376715</jstor_id><sourcerecordid>3376715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgaB8zCwIRQxIDKFnx7HjBYkiKEhIIAGz5bgOpKRxsR0-_j0urSiwMHm4517d-RDaxXCMgWf9aav8MeQAjFEMZAX1MAicMipgFfUACE8LSugG2vR-DAAiL2AdbWCGORMC91B_WKs2pIPG6ufk_q32IRk6VbfJwHbtSLmP5G5idKh1cvukvPHbaK1SjTc7i3cLPVyc359dptc3w6uz0-tU54yGVNOCqLJidGRAYWFKTUdQkNLEiZTiJi8YE1AIQVRemKosRYYrXYIWpa50pbItdDLPnXblxIy0aYNTjZy6ehKHklbV8nelrZ_ko32VmFBCOI8Bh4sAZ18644Oc1F6bplGtsZ2XrGCccsARHvyBY9u5Ni4nSSwzwgmLqD9H2lnvnam-J8EgZ5eQs0vI5SVix_7PBZZ-8fURJAsw61zGEUljJMVf5OgfIquuaYJ5D9Huze3YB-u-cZZxxnGefQKYkKaF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201362726</pqid></control><display><type>article</type><title>Giant-Block Twist Grain Boundary Smectic Phases</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Fernsler, J. ; Hough, L. ; R.-F. Shao ; MacLennan, J. E. ; Navailles, L. ; Brunet, M. ; Madhusudana, N. V. ; Mondain-Monval, O. ; Boyer, C. ; Zasadzinski, J. ; Rego, J. A. ; Walba, D. M. ; Clark, N. A. ; Lubensky, Tom C.</creator><creatorcontrib>Fernsler, J. ; Hough, L. ; R.-F. Shao ; MacLennan, J. E. ; Navailles, L. ; Brunet, M. ; Madhusudana, N. V. ; Mondain-Monval, O. ; Boyer, C. ; Zasadzinski, J. ; Rego, J. A. ; Walba, D. M. ; Clark, N. A. ; Lubensky, Tom C.</creatorcontrib><description>Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of planar layers of thickness$l_{b}&gt;200$nm terminated by GBs that are sharp, mediating large angular jumps in layer orientation between blocks (60° &lt; Δ &lt; 90°), and lubricating the thermal contraction of the smectic layers within the blocks. This phenomenology is well described by basic theoretical models applicable in the limit that the ratio of molecular tilt penetration length-to-layer coherence length is large, and featuring GBs in which smectic ordering is weak, approaching thin, melted (nematic-like) walls. In this limit the energy cost of change of the block size is small, leading to a wide variation of block dimension, depending on preparation conditions. The models also account for the temperature dependence of the TGB helix pitch.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0500664102</identifier><identifier>PMID: 16176991</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chirality ; Cooling ; Electric fields ; Flux density ; Grain boundaries ; Liquid crystals ; Materials research ; Materials science ; Physical Sciences ; Physics ; Screw dislocations ; Surface texture ; Temperature ; Temperature dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (40), p.14191-14196</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3</citedby><cites>FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376715$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376715$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16176991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernsler, J.</creatorcontrib><creatorcontrib>Hough, L.</creatorcontrib><creatorcontrib>R.-F. Shao</creatorcontrib><creatorcontrib>MacLennan, J. E.</creatorcontrib><creatorcontrib>Navailles, L.</creatorcontrib><creatorcontrib>Brunet, M.</creatorcontrib><creatorcontrib>Madhusudana, N. V.</creatorcontrib><creatorcontrib>Mondain-Monval, O.</creatorcontrib><creatorcontrib>Boyer, C.</creatorcontrib><creatorcontrib>Zasadzinski, J.</creatorcontrib><creatorcontrib>Rego, J. A.</creatorcontrib><creatorcontrib>Walba, D. M.</creatorcontrib><creatorcontrib>Clark, N. A.</creatorcontrib><creatorcontrib>Lubensky, Tom C.</creatorcontrib><title>Giant-Block Twist Grain Boundary Smectic Phases</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of planar layers of thickness$l_{b}&gt;200$nm terminated by GBs that are sharp, mediating large angular jumps in layer orientation between blocks (60° &lt; Δ &lt; 90°), and lubricating the thermal contraction of the smectic layers within the blocks. This phenomenology is well described by basic theoretical models applicable in the limit that the ratio of molecular tilt penetration length-to-layer coherence length is large, and featuring GBs in which smectic ordering is weak, approaching thin, melted (nematic-like) walls. In this limit the energy cost of change of the block size is small, leading to a wide variation of block dimension, depending on preparation conditions. The models also account for the temperature dependence of the TGB helix pitch.</description><subject>Chirality</subject><subject>Cooling</subject><subject>Electric fields</subject><subject>Flux density</subject><subject>Grain boundaries</subject><subject>Liquid crystals</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Screw dislocations</subject><subject>Surface texture</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBmALgaB8zCwIRQxIDKFnx7HjBYkiKEhIIAGz5bgOpKRxsR0-_j0urSiwMHm4517d-RDaxXCMgWf9aav8MeQAjFEMZAX1MAicMipgFfUACE8LSugG2vR-DAAiL2AdbWCGORMC91B_WKs2pIPG6ufk_q32IRk6VbfJwHbtSLmP5G5idKh1cvukvPHbaK1SjTc7i3cLPVyc359dptc3w6uz0-tU54yGVNOCqLJidGRAYWFKTUdQkNLEiZTiJi8YE1AIQVRemKosRYYrXYIWpa50pbItdDLPnXblxIy0aYNTjZy6ehKHklbV8nelrZ_ko32VmFBCOI8Bh4sAZ18644Oc1F6bplGtsZ2XrGCccsARHvyBY9u5Ni4nSSwzwgmLqD9H2lnvnam-J8EgZ5eQs0vI5SVix_7PBZZ-8fURJAsw61zGEUljJMVf5OgfIquuaYJ5D9Huze3YB-u-cZZxxnGefQKYkKaF</recordid><startdate>20051004</startdate><enddate>20051004</enddate><creator>Fernsler, J.</creator><creator>Hough, L.</creator><creator>R.-F. Shao</creator><creator>MacLennan, J. E.</creator><creator>Navailles, L.</creator><creator>Brunet, M.</creator><creator>Madhusudana, N. V.</creator><creator>Mondain-Monval, O.</creator><creator>Boyer, C.</creator><creator>Zasadzinski, J.</creator><creator>Rego, J. A.</creator><creator>Walba, D. M.</creator><creator>Clark, N. A.</creator><creator>Lubensky, Tom C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051004</creationdate><title>Giant-Block Twist Grain Boundary Smectic Phases</title><author>Fernsler, J. ; Hough, L. ; R.-F. Shao ; MacLennan, J. E. ; Navailles, L. ; Brunet, M. ; Madhusudana, N. V. ; Mondain-Monval, O. ; Boyer, C. ; Zasadzinski, J. ; Rego, J. A. ; Walba, D. M. ; Clark, N. A. ; Lubensky, Tom C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chirality</topic><topic>Cooling</topic><topic>Electric fields</topic><topic>Flux density</topic><topic>Grain boundaries</topic><topic>Liquid crystals</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Screw dislocations</topic><topic>Surface texture</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernsler, J.</creatorcontrib><creatorcontrib>Hough, L.</creatorcontrib><creatorcontrib>R.-F. Shao</creatorcontrib><creatorcontrib>MacLennan, J. E.</creatorcontrib><creatorcontrib>Navailles, L.</creatorcontrib><creatorcontrib>Brunet, M.</creatorcontrib><creatorcontrib>Madhusudana, N. V.</creatorcontrib><creatorcontrib>Mondain-Monval, O.</creatorcontrib><creatorcontrib>Boyer, C.</creatorcontrib><creatorcontrib>Zasadzinski, J.</creatorcontrib><creatorcontrib>Rego, J. A.</creatorcontrib><creatorcontrib>Walba, D. M.</creatorcontrib><creatorcontrib>Clark, N. A.</creatorcontrib><creatorcontrib>Lubensky, Tom C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernsler, J.</au><au>Hough, L.</au><au>R.-F. Shao</au><au>MacLennan, J. E.</au><au>Navailles, L.</au><au>Brunet, M.</au><au>Madhusudana, N. V.</au><au>Mondain-Monval, O.</au><au>Boyer, C.</au><au>Zasadzinski, J.</au><au>Rego, J. A.</au><au>Walba, D. M.</au><au>Clark, N. A.</au><au>Lubensky, Tom C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant-Block Twist Grain Boundary Smectic Phases</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-10-04</date><risdate>2005</risdate><volume>102</volume><issue>40</issue><spage>14191</spage><epage>14196</epage><pages>14191-14196</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Study of a diverse set of chiral smectic materials, each of which has twist grain boundary (TGB) phases over a broad temperature range and exhibits grid patterns in the Grandjean textures of the TGB helix, shows that these features arise from a common structure: "giant" smectic blocks of planar layers of thickness$l_{b}&gt;200$nm terminated by GBs that are sharp, mediating large angular jumps in layer orientation between blocks (60° &lt; Δ &lt; 90°), and lubricating the thermal contraction of the smectic layers within the blocks. This phenomenology is well described by basic theoretical models applicable in the limit that the ratio of molecular tilt penetration length-to-layer coherence length is large, and featuring GBs in which smectic ordering is weak, approaching thin, melted (nematic-like) walls. In this limit the energy cost of change of the block size is small, leading to a wide variation of block dimension, depending on preparation conditions. The models also account for the temperature dependence of the TGB helix pitch.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16176991</pmid><doi>10.1073/pnas.0500664102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (40), p.14191-14196
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_68674701
source JSTOR Archival Journals; PubMed Central
subjects Chirality
Cooling
Electric fields
Flux density
Grain boundaries
Liquid crystals
Materials research
Materials science
Physical Sciences
Physics
Screw dislocations
Surface texture
Temperature
Temperature dependence
title Giant-Block Twist Grain Boundary Smectic Phases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant-Block%20Twist%20Grain%20Boundary%20Smectic%20Phases&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fernsler,%20J.&rft.date=2005-10-04&rft.volume=102&rft.issue=40&rft.spage=14191&rft.epage=14196&rft.pages=14191-14196&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0500664102&rft_dat=%3Cjstor_proqu%3E3376715%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-c482abf64de0a19ebc4d082be027aa7e5866908992a58efbb931fcb0c9bcfcfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201362726&rft_id=info:pmid/16176991&rft_jstor_id=3376715&rfr_iscdi=true