Loading…

Electrochemical Fabrication of Nanodimensional Multilayer Films

A novel method of fabricating nanodimensional multilayer films using electrochemistry is described. A thin layer of tantalum (Ta) is sputtered on a smooth insulating substrate. Ta is partially electrochemically oxidized (anodized) forming a Ta2O5 layer. The rate of Ta consumption, the rate of Ta2O5...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2005-10, Vol.5 (10), p.1899-1904
Main Authors: Mardilovich, Peter, Kornilovitch, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083
cites cdi_FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083
container_end_page 1904
container_issue 10
container_start_page 1899
container_title Nano letters
container_volume 5
creator Mardilovich, Peter
Kornilovitch, Pavel
description A novel method of fabricating nanodimensional multilayer films using electrochemistry is described. A thin layer of tantalum (Ta) is sputtered on a smooth insulating substrate. Ta is partially electrochemically oxidized (anodized) forming a Ta2O5 layer. The rate of Ta consumption, the rate of Ta2O5 expansion, and the dependence of Ta2O5 thickness on anodization conditions have been carefully characterized to enable accurate predictions of the resulting thicknesses of both layers. Due to strong planarization action of the anodization process, the resulting interfaces Ta/Ta2O5 and Ta2O5/electrolyte are remarkably smooth. The next layer of Ta is deposited on top of Ta2O5, and the process is repeated as many times as needed. The Ta2O5 layers are amorphous and pinhole free. We report fabrication of 10-layer structures with pitches ranging from 200 nm down to 12 nm and with excellent uniformity between the layers. The smallest achieved thickness of Ta layers is only 2.8 ± 0.1 nm. The edges of such films, after proper polishing and etching, could serve as templates in nanoimprint lithography and in other applications.
doi_str_mv 10.1021/nl0511925
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68683962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68683962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EolAYeAGUBSSGwNmOk3hCqGoBqcACc-RcHOHKiYudDH17jFq1C5N_-z7d-T5CrijcU2D0obcgKJVMHJEzKjikuZTseJ_LbELOQ1gBgOQCTsmE5oyWBeRn5HFuNQ7e4bfuDCqbLFTtYxiM6xPXJu-qd43pdB_iQyy_jXYwVm20TxbGduGCnLTKBn25O6fkazH_nL2ky4_n19nTMlU840OKLaBE1dSoGWpBJc0oNhShaYRoeY4AnNVclnUBmRKliBsUOt6Rl6yGkk_J7bbv2rufUYeh6kxAba3qtRtDlZd5yWXOIni3BdG7ELxuq7U3nfKbikL1Z6va24rs9a7pWHe6OZA7PRG42QEqRDmtVz2acOAKRrP41QOnMFQrN_qoKvwz8BfOWXzD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68683962</pqid></control><display><type>article</type><title>Electrochemical Fabrication of Nanodimensional Multilayer Films</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mardilovich, Peter ; Kornilovitch, Pavel</creator><creatorcontrib>Mardilovich, Peter ; Kornilovitch, Pavel</creatorcontrib><description>A novel method of fabricating nanodimensional multilayer films using electrochemistry is described. A thin layer of tantalum (Ta) is sputtered on a smooth insulating substrate. Ta is partially electrochemically oxidized (anodized) forming a Ta2O5 layer. The rate of Ta consumption, the rate of Ta2O5 expansion, and the dependence of Ta2O5 thickness on anodization conditions have been carefully characterized to enable accurate predictions of the resulting thicknesses of both layers. Due to strong planarization action of the anodization process, the resulting interfaces Ta/Ta2O5 and Ta2O5/electrolyte are remarkably smooth. The next layer of Ta is deposited on top of Ta2O5, and the process is repeated as many times as needed. The Ta2O5 layers are amorphous and pinhole free. We report fabrication of 10-layer structures with pitches ranging from 200 nm down to 12 nm and with excellent uniformity between the layers. The smallest achieved thickness of Ta layers is only 2.8 ± 0.1 nm. The edges of such films, after proper polishing and etching, could serve as templates in nanoimprint lithography and in other applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl0511925</identifier><identifier>PMID: 16218706</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Electronics ; Exact sciences and technology ; Microelectronic fabrication (materials and surfaces technology) ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2005-10, Vol.5 (10), p.1899-1904</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083</citedby><cites>FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17214569$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16218706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mardilovich, Peter</creatorcontrib><creatorcontrib>Kornilovitch, Pavel</creatorcontrib><title>Electrochemical Fabrication of Nanodimensional Multilayer Films</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>A novel method of fabricating nanodimensional multilayer films using electrochemistry is described. A thin layer of tantalum (Ta) is sputtered on a smooth insulating substrate. Ta is partially electrochemically oxidized (anodized) forming a Ta2O5 layer. The rate of Ta consumption, the rate of Ta2O5 expansion, and the dependence of Ta2O5 thickness on anodization conditions have been carefully characterized to enable accurate predictions of the resulting thicknesses of both layers. Due to strong planarization action of the anodization process, the resulting interfaces Ta/Ta2O5 and Ta2O5/electrolyte are remarkably smooth. The next layer of Ta is deposited on top of Ta2O5, and the process is repeated as many times as needed. The Ta2O5 layers are amorphous and pinhole free. We report fabrication of 10-layer structures with pitches ranging from 200 nm down to 12 nm and with excellent uniformity between the layers. The smallest achieved thickness of Ta layers is only 2.8 ± 0.1 nm. The edges of such films, after proper polishing and etching, could serve as templates in nanoimprint lithography and in other applications.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQhi0EolAYeAGUBSSGwNmOk3hCqGoBqcACc-RcHOHKiYudDH17jFq1C5N_-z7d-T5CrijcU2D0obcgKJVMHJEzKjikuZTseJ_LbELOQ1gBgOQCTsmE5oyWBeRn5HFuNQ7e4bfuDCqbLFTtYxiM6xPXJu-qd43pdB_iQyy_jXYwVm20TxbGduGCnLTKBn25O6fkazH_nL2ky4_n19nTMlU840OKLaBE1dSoGWpBJc0oNhShaYRoeY4AnNVclnUBmRKliBsUOt6Rl6yGkk_J7bbv2rufUYeh6kxAba3qtRtDlZd5yWXOIni3BdG7ELxuq7U3nfKbikL1Z6va24rs9a7pWHe6OZA7PRG42QEqRDmtVz2acOAKRrP41QOnMFQrN_qoKvwz8BfOWXzD</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Mardilovich, Peter</creator><creator>Kornilovitch, Pavel</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>Electrochemical Fabrication of Nanodimensional Multilayer Films</title><author>Mardilovich, Peter ; Kornilovitch, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mardilovich, Peter</creatorcontrib><creatorcontrib>Kornilovitch, Pavel</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mardilovich, Peter</au><au>Kornilovitch, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Fabrication of Nanodimensional Multilayer Films</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>5</volume><issue>10</issue><spage>1899</spage><epage>1904</epage><pages>1899-1904</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>A novel method of fabricating nanodimensional multilayer films using electrochemistry is described. A thin layer of tantalum (Ta) is sputtered on a smooth insulating substrate. Ta is partially electrochemically oxidized (anodized) forming a Ta2O5 layer. The rate of Ta consumption, the rate of Ta2O5 expansion, and the dependence of Ta2O5 thickness on anodization conditions have been carefully characterized to enable accurate predictions of the resulting thicknesses of both layers. Due to strong planarization action of the anodization process, the resulting interfaces Ta/Ta2O5 and Ta2O5/electrolyte are remarkably smooth. The next layer of Ta is deposited on top of Ta2O5, and the process is repeated as many times as needed. The Ta2O5 layers are amorphous and pinhole free. We report fabrication of 10-layer structures with pitches ranging from 200 nm down to 12 nm and with excellent uniformity between the layers. The smallest achieved thickness of Ta layers is only 2.8 ± 0.1 nm. The edges of such films, after proper polishing and etching, could serve as templates in nanoimprint lithography and in other applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16218706</pmid><doi>10.1021/nl0511925</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2005-10, Vol.5 (10), p.1899-1904
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_68683962
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Electronics
Exact sciences and technology
Microelectronic fabrication (materials and surfaces technology)
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Structure of solids and liquids
crystallography
title Electrochemical Fabrication of Nanodimensional Multilayer Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Fabrication%20of%20Nanodimensional%20Multilayer%20Films&rft.jtitle=Nano%20letters&rft.au=Mardilovich,%20Peter&rft.date=2005-10-01&rft.volume=5&rft.issue=10&rft.spage=1899&rft.epage=1904&rft.pages=1899-1904&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl0511925&rft_dat=%3Cproquest_cross%3E68683962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a343t-cf0c9cadbce2ce519141cd1c0dd55f36c0032b398b704a5856997e398c382b083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68683962&rft_id=info:pmid/16218706&rfr_iscdi=true