Loading…

Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion

Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation...

Full description

Saved in:
Bibliographic Details
Published in:Placenta (Eastbourne) 2005-11, Vol.26 (10), p.709-720
Main Authors: LaMarca, H.L., Ott, C.M., Höner zu Bentrup, K., LeBlanc, C.L., Pierson, D.L., Nelson, A.B., Scandurro, A.B., Whitley, G. St. J., Nickerson, C.A., Morris, C.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3
cites cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3
container_end_page 720
container_issue 10
container_start_page 709
container_title Placenta (Eastbourne)
container_volume 26
creator LaMarca, H.L.
Ott, C.M.
Höner zu Bentrup, K.
LeBlanc, C.L.
Pierson, D.L.
Nelson, A.B.
Scandurro, A.B.
Whitley, G. St. J.
Nickerson, C.A.
Morris, C.A.
description Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.
doi_str_mv 10.1016/j.placenta.2004.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68698829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143400404002747</els_id><sourcerecordid>68698829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHlFaq9wG0Xj7111jdQRQtSJS7t2fKOZ4kj7zrYTqBvj6ME9chpDv7mn1-fGbsG3gEH9Wnb7YJFWortBOd9B9BxLl-xFdxI0Urg4jVbcehl29fnC_Yu5y3nXPcg3rILUEIoEHzFzOMmEbXOz7RkHxcbmp8p_i6bJk4N_SnJHnwIcZ8bfC6xpLjbxDHYXHKzS3GOhXLj_DRRql28LTWisYtr_HKwx7wr9mayIdP787xkT3dfH2-_tQ8_7r_ffnloUWpV2lHDoDlKqwfkdhy0GwYgpzV3OK5drya6UbBGi8hHqZ3tpeAoxtEJMYFDeck-nnJrq197ysXMPiOFYBeq7Y0alB4GoSuoTiCmmHOiyeySn216NsDNUa3Zmn9qzVGtATBVbV28Pl_YjzO5l7Wzywp8OAM2ow1Tsgv6_MKtQUP9l8p9PnFUfRw8JZPR04LkfCIsxkX_vy5_AUefniQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68698829</pqid></control><display><type>article</type><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><source>ScienceDirect Journals</source><creator>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</creator><creatorcontrib>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</creatorcontrib><description>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</description><identifier>ISSN: 0143-4004</identifier><identifier>EISSN: 1532-3102</identifier><identifier>DOI: 10.1016/j.placenta.2004.11.003</identifier><identifier>PMID: 16226120</identifier><identifier>CODEN: PLACDF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Bioreactors ; Blotting, Western ; Cell Aggregation - physiology ; Cell Differentiation - physiology ; Cell Growth Processes - physiology ; Cell Line ; Cytotrophoblast ; Differentiation ; Embryology: invertebrates and vertebrates. Teratology ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Invasion ; L-Selectin - biosynthesis ; L-Selectin - genetics ; Matrix metalloproteinase ; Matrix Metalloproteinases - genetics ; Matrix Metalloproteinases - metabolism ; Matrix Metalloproteinases - secretion ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Placentation ; Placentation - physiology ; Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis ; Platelet Endothelial Cell Adhesion Molecule-1 - genetics ; Pregnancy ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Rotating wall vessel ; Three-dimensional ; Trophoblasts - cytology ; Trophoblasts - enzymology ; Trophoblasts - secretion ; Trophoblasts - ultrastructure ; Urokinase-Type Plasminogen Activator - genetics ; Urokinase-Type Plasminogen Activator - metabolism ; Urokinase-Type Plasminogen Activator - secretion</subject><ispartof>Placenta (Eastbourne), 2005-11, Vol.26 (10), p.709-720</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</citedby><cites>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17191102$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16226120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaMarca, H.L.</creatorcontrib><creatorcontrib>Ott, C.M.</creatorcontrib><creatorcontrib>Höner zu Bentrup, K.</creatorcontrib><creatorcontrib>LeBlanc, C.L.</creatorcontrib><creatorcontrib>Pierson, D.L.</creatorcontrib><creatorcontrib>Nelson, A.B.</creatorcontrib><creatorcontrib>Scandurro, A.B.</creatorcontrib><creatorcontrib>Whitley, G. St. J.</creatorcontrib><creatorcontrib>Nickerson, C.A.</creatorcontrib><creatorcontrib>Morris, C.A.</creatorcontrib><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><title>Placenta (Eastbourne)</title><addtitle>Placenta</addtitle><description>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Blotting, Western</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Growth Processes - physiology</subject><subject>Cell Line</subject><subject>Cytotrophoblast</subject><subject>Differentiation</subject><subject>Embryology: invertebrates and vertebrates. Teratology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Invasion</subject><subject>L-Selectin - biosynthesis</subject><subject>L-Selectin - genetics</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinases - genetics</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Matrix Metalloproteinases - secretion</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Placentation</subject><subject>Placentation - physiology</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</subject><subject>Pregnancy</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Rotating wall vessel</subject><subject>Three-dimensional</subject><subject>Trophoblasts - cytology</subject><subject>Trophoblasts - enzymology</subject><subject>Trophoblasts - secretion</subject><subject>Trophoblasts - ultrastructure</subject><subject>Urokinase-Type Plasminogen Activator - genetics</subject><subject>Urokinase-Type Plasminogen Activator - metabolism</subject><subject>Urokinase-Type Plasminogen Activator - secretion</subject><issn>0143-4004</issn><issn>1532-3102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EoqHlFaq9wG0Xj7111jdQRQtSJS7t2fKOZ4kj7zrYTqBvj6ME9chpDv7mn1-fGbsG3gEH9Wnb7YJFWortBOd9B9BxLl-xFdxI0Urg4jVbcehl29fnC_Yu5y3nXPcg3rILUEIoEHzFzOMmEbXOz7RkHxcbmp8p_i6bJk4N_SnJHnwIcZ8bfC6xpLjbxDHYXHKzS3GOhXLj_DRRql28LTWisYtr_HKwx7wr9mayIdP787xkT3dfH2-_tQ8_7r_ffnloUWpV2lHDoDlKqwfkdhy0GwYgpzV3OK5drya6UbBGi8hHqZ3tpeAoxtEJMYFDeck-nnJrq197ysXMPiOFYBeq7Y0alB4GoSuoTiCmmHOiyeySn216NsDNUa3Zmn9qzVGtATBVbV28Pl_YjzO5l7Wzywp8OAM2ow1Tsgv6_MKtQUP9l8p9PnFUfRw8JZPR04LkfCIsxkX_vy5_AUefniQ</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>LaMarca, H.L.</creator><creator>Ott, C.M.</creator><creator>Höner zu Bentrup, K.</creator><creator>LeBlanc, C.L.</creator><creator>Pierson, D.L.</creator><creator>Nelson, A.B.</creator><creator>Scandurro, A.B.</creator><creator>Whitley, G. St. J.</creator><creator>Nickerson, C.A.</creator><creator>Morris, C.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><author>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Blotting, Western</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Growth Processes - physiology</topic><topic>Cell Line</topic><topic>Cytotrophoblast</topic><topic>Differentiation</topic><topic>Embryology: invertebrates and vertebrates. Teratology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Invasion</topic><topic>L-Selectin - biosynthesis</topic><topic>L-Selectin - genetics</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinases - genetics</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Matrix Metalloproteinases - secretion</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Placentation</topic><topic>Placentation - physiology</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</topic><topic>Pregnancy</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Rotating wall vessel</topic><topic>Three-dimensional</topic><topic>Trophoblasts - cytology</topic><topic>Trophoblasts - enzymology</topic><topic>Trophoblasts - secretion</topic><topic>Trophoblasts - ultrastructure</topic><topic>Urokinase-Type Plasminogen Activator - genetics</topic><topic>Urokinase-Type Plasminogen Activator - metabolism</topic><topic>Urokinase-Type Plasminogen Activator - secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaMarca, H.L.</creatorcontrib><creatorcontrib>Ott, C.M.</creatorcontrib><creatorcontrib>Höner zu Bentrup, K.</creatorcontrib><creatorcontrib>LeBlanc, C.L.</creatorcontrib><creatorcontrib>Pierson, D.L.</creatorcontrib><creatorcontrib>Nelson, A.B.</creatorcontrib><creatorcontrib>Scandurro, A.B.</creatorcontrib><creatorcontrib>Whitley, G. St. J.</creatorcontrib><creatorcontrib>Nickerson, C.A.</creatorcontrib><creatorcontrib>Morris, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Placenta (Eastbourne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaMarca, H.L.</au><au>Ott, C.M.</au><au>Höner zu Bentrup, K.</au><au>LeBlanc, C.L.</au><au>Pierson, D.L.</au><au>Nelson, A.B.</au><au>Scandurro, A.B.</au><au>Whitley, G. St. J.</au><au>Nickerson, C.A.</au><au>Morris, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</atitle><jtitle>Placenta (Eastbourne)</jtitle><addtitle>Placenta</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>26</volume><issue>10</issue><spage>709</spage><epage>720</epage><pages>709-720</pages><issn>0143-4004</issn><eissn>1532-3102</eissn><coden>PLACDF</coden><abstract>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16226120</pmid><doi>10.1016/j.placenta.2004.11.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-4004
ispartof Placenta (Eastbourne), 2005-11, Vol.26 (10), p.709-720
issn 0143-4004
1532-3102
language eng
recordid cdi_proquest_miscellaneous_68698829
source ScienceDirect Journals
subjects Biological and medical sciences
Bioreactors
Blotting, Western
Cell Aggregation - physiology
Cell Differentiation - physiology
Cell Growth Processes - physiology
Cell Line
Cytotrophoblast
Differentiation
Embryology: invertebrates and vertebrates. Teratology
Female
Fundamental and applied biological sciences. Psychology
Humans
Invasion
L-Selectin - biosynthesis
L-Selectin - genetics
Matrix metalloproteinase
Matrix Metalloproteinases - genetics
Matrix Metalloproteinases - metabolism
Matrix Metalloproteinases - secretion
Microscopy, Electron, Scanning
Microscopy, Fluorescence
Placentation
Placentation - physiology
Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis
Platelet Endothelial Cell Adhesion Molecule-1 - genetics
Pregnancy
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Rotating wall vessel
Three-dimensional
Trophoblasts - cytology
Trophoblasts - enzymology
Trophoblasts - secretion
Trophoblasts - ultrastructure
Urokinase-Type Plasminogen Activator - genetics
Urokinase-Type Plasminogen Activator - metabolism
Urokinase-Type Plasminogen Activator - secretion
title Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20growth%20of%20extravillous%20cytotrophoblasts%20promotes%20differentiation%20and%20invasion&rft.jtitle=Placenta%20(Eastbourne)&rft.au=LaMarca,%20H.L.&rft.date=2005-11-01&rft.volume=26&rft.issue=10&rft.spage=709&rft.epage=720&rft.pages=709-720&rft.issn=0143-4004&rft.eissn=1532-3102&rft.coden=PLACDF&rft_id=info:doi/10.1016/j.placenta.2004.11.003&rft_dat=%3Cproquest_cross%3E68698829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68698829&rft_id=info:pmid/16226120&rfr_iscdi=true