Loading…
Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion
Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation...
Saved in:
Published in: | Placenta (Eastbourne) 2005-11, Vol.26 (10), p.709-720 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3 |
container_end_page | 720 |
container_issue | 10 |
container_start_page | 709 |
container_title | Placenta (Eastbourne) |
container_volume | 26 |
creator | LaMarca, H.L. Ott, C.M. Höner zu Bentrup, K. LeBlanc, C.L. Pierson, D.L. Nelson, A.B. Scandurro, A.B. Whitley, G. St. J. Nickerson, C.A. Morris, C.A. |
description | Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion. |
doi_str_mv | 10.1016/j.placenta.2004.11.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68698829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143400404002747</els_id><sourcerecordid>68698829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHlFaq9wG0Xj7111jdQRQtSJS7t2fKOZ4kj7zrYTqBvj6ME9chpDv7mn1-fGbsG3gEH9Wnb7YJFWortBOd9B9BxLl-xFdxI0Urg4jVbcehl29fnC_Yu5y3nXPcg3rILUEIoEHzFzOMmEbXOz7RkHxcbmp8p_i6bJk4N_SnJHnwIcZ8bfC6xpLjbxDHYXHKzS3GOhXLj_DRRql28LTWisYtr_HKwx7wr9mayIdP787xkT3dfH2-_tQ8_7r_ffnloUWpV2lHDoDlKqwfkdhy0GwYgpzV3OK5drya6UbBGi8hHqZ3tpeAoxtEJMYFDeck-nnJrq197ysXMPiOFYBeq7Y0alB4GoSuoTiCmmHOiyeySn216NsDNUa3Zmn9qzVGtATBVbV28Pl_YjzO5l7Wzywp8OAM2ow1Tsgv6_MKtQUP9l8p9PnFUfRw8JZPR04LkfCIsxkX_vy5_AUefniQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68698829</pqid></control><display><type>article</type><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><source>ScienceDirect Journals</source><creator>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</creator><creatorcontrib>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</creatorcontrib><description>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</description><identifier>ISSN: 0143-4004</identifier><identifier>EISSN: 1532-3102</identifier><identifier>DOI: 10.1016/j.placenta.2004.11.003</identifier><identifier>PMID: 16226120</identifier><identifier>CODEN: PLACDF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Bioreactors ; Blotting, Western ; Cell Aggregation - physiology ; Cell Differentiation - physiology ; Cell Growth Processes - physiology ; Cell Line ; Cytotrophoblast ; Differentiation ; Embryology: invertebrates and vertebrates. Teratology ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Invasion ; L-Selectin - biosynthesis ; L-Selectin - genetics ; Matrix metalloproteinase ; Matrix Metalloproteinases - genetics ; Matrix Metalloproteinases - metabolism ; Matrix Metalloproteinases - secretion ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Placentation ; Placentation - physiology ; Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis ; Platelet Endothelial Cell Adhesion Molecule-1 - genetics ; Pregnancy ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Rotating wall vessel ; Three-dimensional ; Trophoblasts - cytology ; Trophoblasts - enzymology ; Trophoblasts - secretion ; Trophoblasts - ultrastructure ; Urokinase-Type Plasminogen Activator - genetics ; Urokinase-Type Plasminogen Activator - metabolism ; Urokinase-Type Plasminogen Activator - secretion</subject><ispartof>Placenta (Eastbourne), 2005-11, Vol.26 (10), p.709-720</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</citedby><cites>FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17191102$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16226120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaMarca, H.L.</creatorcontrib><creatorcontrib>Ott, C.M.</creatorcontrib><creatorcontrib>Höner zu Bentrup, K.</creatorcontrib><creatorcontrib>LeBlanc, C.L.</creatorcontrib><creatorcontrib>Pierson, D.L.</creatorcontrib><creatorcontrib>Nelson, A.B.</creatorcontrib><creatorcontrib>Scandurro, A.B.</creatorcontrib><creatorcontrib>Whitley, G. St. J.</creatorcontrib><creatorcontrib>Nickerson, C.A.</creatorcontrib><creatorcontrib>Morris, C.A.</creatorcontrib><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><title>Placenta (Eastbourne)</title><addtitle>Placenta</addtitle><description>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Blotting, Western</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Growth Processes - physiology</subject><subject>Cell Line</subject><subject>Cytotrophoblast</subject><subject>Differentiation</subject><subject>Embryology: invertebrates and vertebrates. Teratology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Invasion</subject><subject>L-Selectin - biosynthesis</subject><subject>L-Selectin - genetics</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinases - genetics</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Matrix Metalloproteinases - secretion</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Placentation</subject><subject>Placentation - physiology</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</subject><subject>Pregnancy</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Rotating wall vessel</subject><subject>Three-dimensional</subject><subject>Trophoblasts - cytology</subject><subject>Trophoblasts - enzymology</subject><subject>Trophoblasts - secretion</subject><subject>Trophoblasts - ultrastructure</subject><subject>Urokinase-Type Plasminogen Activator - genetics</subject><subject>Urokinase-Type Plasminogen Activator - metabolism</subject><subject>Urokinase-Type Plasminogen Activator - secretion</subject><issn>0143-4004</issn><issn>1532-3102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EoqHlFaq9wG0Xj7111jdQRQtSJS7t2fKOZ4kj7zrYTqBvj6ME9chpDv7mn1-fGbsG3gEH9Wnb7YJFWortBOd9B9BxLl-xFdxI0Urg4jVbcehl29fnC_Yu5y3nXPcg3rILUEIoEHzFzOMmEbXOz7RkHxcbmp8p_i6bJk4N_SnJHnwIcZ8bfC6xpLjbxDHYXHKzS3GOhXLj_DRRql28LTWisYtr_HKwx7wr9mayIdP787xkT3dfH2-_tQ8_7r_ffnloUWpV2lHDoDlKqwfkdhy0GwYgpzV3OK5drya6UbBGi8hHqZ3tpeAoxtEJMYFDeck-nnJrq197ysXMPiOFYBeq7Y0alB4GoSuoTiCmmHOiyeySn216NsDNUa3Zmn9qzVGtATBVbV28Pl_YjzO5l7Wzywp8OAM2ow1Tsgv6_MKtQUP9l8p9PnFUfRw8JZPR04LkfCIsxkX_vy5_AUefniQ</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>LaMarca, H.L.</creator><creator>Ott, C.M.</creator><creator>Höner zu Bentrup, K.</creator><creator>LeBlanc, C.L.</creator><creator>Pierson, D.L.</creator><creator>Nelson, A.B.</creator><creator>Scandurro, A.B.</creator><creator>Whitley, G. St. J.</creator><creator>Nickerson, C.A.</creator><creator>Morris, C.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</title><author>LaMarca, H.L. ; Ott, C.M. ; Höner zu Bentrup, K. ; LeBlanc, C.L. ; Pierson, D.L. ; Nelson, A.B. ; Scandurro, A.B. ; Whitley, G. St. J. ; Nickerson, C.A. ; Morris, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Blotting, Western</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Growth Processes - physiology</topic><topic>Cell Line</topic><topic>Cytotrophoblast</topic><topic>Differentiation</topic><topic>Embryology: invertebrates and vertebrates. Teratology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Invasion</topic><topic>L-Selectin - biosynthesis</topic><topic>L-Selectin - genetics</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinases - genetics</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Matrix Metalloproteinases - secretion</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Placentation</topic><topic>Placentation - physiology</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</topic><topic>Pregnancy</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Rotating wall vessel</topic><topic>Three-dimensional</topic><topic>Trophoblasts - cytology</topic><topic>Trophoblasts - enzymology</topic><topic>Trophoblasts - secretion</topic><topic>Trophoblasts - ultrastructure</topic><topic>Urokinase-Type Plasminogen Activator - genetics</topic><topic>Urokinase-Type Plasminogen Activator - metabolism</topic><topic>Urokinase-Type Plasminogen Activator - secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaMarca, H.L.</creatorcontrib><creatorcontrib>Ott, C.M.</creatorcontrib><creatorcontrib>Höner zu Bentrup, K.</creatorcontrib><creatorcontrib>LeBlanc, C.L.</creatorcontrib><creatorcontrib>Pierson, D.L.</creatorcontrib><creatorcontrib>Nelson, A.B.</creatorcontrib><creatorcontrib>Scandurro, A.B.</creatorcontrib><creatorcontrib>Whitley, G. St. J.</creatorcontrib><creatorcontrib>Nickerson, C.A.</creatorcontrib><creatorcontrib>Morris, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Placenta (Eastbourne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaMarca, H.L.</au><au>Ott, C.M.</au><au>Höner zu Bentrup, K.</au><au>LeBlanc, C.L.</au><au>Pierson, D.L.</au><au>Nelson, A.B.</au><au>Scandurro, A.B.</au><au>Whitley, G. St. J.</au><au>Nickerson, C.A.</au><au>Morris, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion</atitle><jtitle>Placenta (Eastbourne)</jtitle><addtitle>Placenta</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>26</volume><issue>10</issue><spage>709</spage><epage>720</epage><pages>709-720</pages><issn>0143-4004</issn><eissn>1532-3102</eissn><coden>PLACDF</coden><abstract>Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV supported the growth of the human CTB cell line SGHPL-4 and allowed for the formation of complex, multilayered 3-D aggregates that were morphologically, phenotypically, and functionally distinct from SGHPL-4 monolayers. The cells cultured three-dimensionally differentiated into an aggressively invasive cell population characterized by the upregulation of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9 and urokinase-type plasminogen activator (uPA) secretion and activation. Microarray analysis of the 3-D and 2-D cultured cells revealed increased expression in the 3-D cells of various genes that are known mediators of invasion, including MT1-MMP, PECAM-1 and L-selectin, as well as genes not previously associated with CTB differentiation such as MMP-13 and MT5-MMP. These results were verified by quantitative real-time PCR. These findings suggest that when cultured in 3-D, SGHPL-4 cells closely mimic differentiating in utero CTBs, providing a novel approach for the in vitro study of the molecular mechanisms that regulate CTB differentiation and invasion.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16226120</pmid><doi>10.1016/j.placenta.2004.11.003</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-4004 |
ispartof | Placenta (Eastbourne), 2005-11, Vol.26 (10), p.709-720 |
issn | 0143-4004 1532-3102 |
language | eng |
recordid | cdi_proquest_miscellaneous_68698829 |
source | ScienceDirect Journals |
subjects | Biological and medical sciences Bioreactors Blotting, Western Cell Aggregation - physiology Cell Differentiation - physiology Cell Growth Processes - physiology Cell Line Cytotrophoblast Differentiation Embryology: invertebrates and vertebrates. Teratology Female Fundamental and applied biological sciences. Psychology Humans Invasion L-Selectin - biosynthesis L-Selectin - genetics Matrix metalloproteinase Matrix Metalloproteinases - genetics Matrix Metalloproteinases - metabolism Matrix Metalloproteinases - secretion Microscopy, Electron, Scanning Microscopy, Fluorescence Placentation Placentation - physiology Platelet Endothelial Cell Adhesion Molecule-1 - biosynthesis Platelet Endothelial Cell Adhesion Molecule-1 - genetics Pregnancy Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - biosynthesis RNA, Messenger - genetics Rotating wall vessel Three-dimensional Trophoblasts - cytology Trophoblasts - enzymology Trophoblasts - secretion Trophoblasts - ultrastructure Urokinase-Type Plasminogen Activator - genetics Urokinase-Type Plasminogen Activator - metabolism Urokinase-Type Plasminogen Activator - secretion |
title | Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20growth%20of%20extravillous%20cytotrophoblasts%20promotes%20differentiation%20and%20invasion&rft.jtitle=Placenta%20(Eastbourne)&rft.au=LaMarca,%20H.L.&rft.date=2005-11-01&rft.volume=26&rft.issue=10&rft.spage=709&rft.epage=720&rft.pages=709-720&rft.issn=0143-4004&rft.eissn=1532-3102&rft.coden=PLACDF&rft_id=info:doi/10.1016/j.placenta.2004.11.003&rft_dat=%3Cproquest_cross%3E68698829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-b91890c3a98c0ab89d881ed990dcb7d46fe5617cacc0b39da4320c2bbd22f1dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68698829&rft_id=info:pmid/16226120&rfr_iscdi=true |