Loading…
Use of short monolithic columns for isolation of low abundance membrane proteins
Convective interaction media (CIM) monoliths provide a stationary phase with a high binding capacity for large molecules and are capable of high flow rates at a very low pressure drop. Used as anion- and cation-exchangers or with affinity ligands such as antibodies, these columns have the potential...
Saved in:
Published in: | Journal of Chromatography A 2006-08, Vol.1123 (2), p.199-204 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Convective interaction media (CIM) monoliths provide a stationary phase with a high binding capacity for large molecules and are capable of high flow rates at a very low pressure drop. Used as anion- and cation-exchangers or with affinity ligands such as antibodies, these columns have the potential for processing large volumes of complex biological mixtures within a short time. In the present report, monoclonal antibodies against several rat liver plasma membrane proteins were bound and cross-linked to protein A or protein G CIM affinity columns with a bed volume of only 60
μL. Antigens recognized by bound antibodies and co-eluting (interacting) proteins were rapidly isolated in a single step from either total plasma membrane extracts or subfractions isolated using anion-exchange CIM disk-shaped columns. The isolated antigens and co-eluting proteins were subsequently identified by immunoblot or by LC–MS/MS. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/j.chroma.2006.02.053 |