Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells

The primary targets of iron chelators used for treating transfusional iron overload are prevention of iron ingress into tissues and its intracellular scavenging. The present study was aimed at elucidating the capacity of clinically important iron chelators such as deferiprone (DFP), desferrioxamine,...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2005-11, Vol.106 (9), p.3242-3250
Main Authors: Glickstein, Hava, Ben El, Rinat, Shvartsman, Maya, Cabantchik, Z. Ioav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The primary targets of iron chelators used for treating transfusional iron overload are prevention of iron ingress into tissues and its intracellular scavenging. The present study was aimed at elucidating the capacity of clinically important iron chelators such as deferiprone (DFP), desferrioxamine, and ICL670 to (a) gain direct access to intracellular iron pools of key cells of iron accumulation (macrophages, hepatocytes, and cardiomyocyte cell lines); (b) chelate the labile iron present in discrete cell compartments/organelles; and (c) prevent labile iron involvement in the generation of reactive oxidant species. Chelation of cytosolic and organellar cell iron was visualized dynamically and quantitatively in living cells by fluorescence microscopic imaging of fluorescent metallosensors (used as iron-quenched complexes of calceins) targeted to either cytosol, endosome-lysosomes, or mitochondria. The rate and extent of fluorescence recovery provided an in situ measure of the accessibility of chelators to particular cell sites/organelles. Complementary, fluorogenic redox probes associated with cell compartments enabled identification of chelator-sensitive, localized reactive oxidant production. Our studies indicate that chelation by desferrioxamine is slow and is enhanced in cells with relatively high endocytic activities, while ICL670 and DFP readily enter most cells and efficiently reach the major intracellular sites of iron accumulation.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2005-02-0460