Loading…

Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces

Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin‐based syst...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular bioscience 2005-10, Vol.5 (10), p.1022-1031
Main Authors: Fang, Ning, Zhu, Aiping, Chan-Park, Mary B., Chan, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3
cites cdi_FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3
container_end_page 1031
container_issue 10
container_start_page 1022
container_title Macromolecular bioscience
container_volume 5
creator Fang, Ning
Zhu, Aiping
Chan-Park, Mary B.
Chan, Vincent
description Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin‐based systems for cell regeneration. Biomacromolecular ultra‐thin films, chemically immobilized on fused silica are ideal experimental models for determining the effect of surface properties on the biophysical cascades following cell seeding. In this study, confocal reflectance interference contrast microscopy (C‐RICM), in conjunction with phase contrast microscopy and fluorescence confocal microscopy, was applied to detect the adhesion contact dynamics of 3T3 fibroblasts on chitosan and gelatin ultrathin films. X‐ray photoelectron spectroscopy (XPS) confirmed the immobilization of chitosan or gelatin on the silanized glass surface. Both the initial cell deformation rate and the change of two‐dimensional spread area of the 3T3 fibroblasts are higher on gelatin‐modified surfaces than on chitosan surfaces. The steady‐state adhesion energy of 3T3 fibroblasts on gelatin film is three times higher than that on chitosan film. Immuno‐staining of actin further demonstrates the different organization of cytoskeleton, likely induced by the change in cell signaling mechanism on the two biomacromolecular surfaces. The better attachment of 3T3 fibroblast to gelatin is postulated to be caused by the presence of adhesive domains on gelatin. C‐RICM images of a typical 3T3 cell on a gelatin‐immobilized substrate.
doi_str_mv 10.1002/mabi.200500123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68717400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68717400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3</originalsourceid><addsrcrecordid>eNqF0E1P3DAQBmALUQGlXDlWucAtW39_HJdtF5CgSNCqR2vWcVRDElM7Ed1_X6NdLb1x8lh6ZsZ-EToleEYwpl96WIUZxVhgTCjbQ0dEElkLYsT-rtbqEH3M-bEQpQ09QIdEUqylJkdoOW9--xziUC3iMIIbq6_rAfrgchXbahlWKa46yGO5DtVFiD24FPvYeTd1kKqHKbXgfP6EPrTQZX-yPY_Rz-W3H4ur-ubu8noxv6kd55TVIB1tyl7aYNPqUmnSagwGZNMwwbjgTFDhuTGae09YIz1vBDe-pZo64dgxOt_MfU7xz-TzaPuQne86GHycspVaEcUxfhcSwxknghY428Dyr5yTb-1zCj2ktSXYvkZsXyO2u4hLw-ft5GnV--aNbzMt4GwLIDvo2gSDC_nNKaINxqo4s3EvofPrd9ba2_nF9f-PqDe9IY_-764X0pOViilhf32_tPdXD7fSqKWl7B9jtqKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19434152</pqid></control><display><type>article</type><title>Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fang, Ning ; Zhu, Aiping ; Chan-Park, Mary B. ; Chan, Vincent</creator><creatorcontrib>Fang, Ning ; Zhu, Aiping ; Chan-Park, Mary B. ; Chan, Vincent</creatorcontrib><description>Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin‐based systems for cell regeneration. Biomacromolecular ultra‐thin films, chemically immobilized on fused silica are ideal experimental models for determining the effect of surface properties on the biophysical cascades following cell seeding. In this study, confocal reflectance interference contrast microscopy (C‐RICM), in conjunction with phase contrast microscopy and fluorescence confocal microscopy, was applied to detect the adhesion contact dynamics of 3T3 fibroblasts on chitosan and gelatin ultrathin films. X‐ray photoelectron spectroscopy (XPS) confirmed the immobilization of chitosan or gelatin on the silanized glass surface. Both the initial cell deformation rate and the change of two‐dimensional spread area of the 3T3 fibroblasts are higher on gelatin‐modified surfaces than on chitosan surfaces. The steady‐state adhesion energy of 3T3 fibroblasts on gelatin film is three times higher than that on chitosan film. Immuno‐staining of actin further demonstrates the different organization of cytoskeleton, likely induced by the change in cell signaling mechanism on the two biomacromolecular surfaces. The better attachment of 3T3 fibroblast to gelatin is postulated to be caused by the presence of adhesive domains on gelatin. C‐RICM images of a typical 3T3 cell on a gelatin‐immobilized substrate.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.200500123</identifier><identifier>PMID: 16208681</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>3T3 Cells ; Actins - metabolism ; adhesion dynamics ; Animals ; Applied sciences ; Biocompatible Materials - chemistry ; biophysics ; Cell Adhesion ; Chitosan - chemistry ; Coated Materials, Biocompatible ; cytoskeleton ; Exact sciences and technology ; Fibroblasts - metabolism ; Gelatin - chemistry ; Gelatin - ultrastructure ; Immunohistochemistry ; Kinetics ; Macromolecular Substances ; Mice ; Microscopy, Atomic Force ; Microscopy, Confocal ; Microscopy, Interference ; Natural polymers ; Physicochemistry of polymers ; polymer ; Proteins ; Silicon Dioxide - chemistry ; Spectrometry, X-Ray Emission ; Starch and polysaccharides ; Substrate Specificity ; Surface Properties</subject><ispartof>Macromolecular bioscience, 2005-10, Vol.5 (10), p.1022-1031</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3</citedby><cites>FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17189007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16208681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Zhu, Aiping</creatorcontrib><creatorcontrib>Chan-Park, Mary B.</creatorcontrib><creatorcontrib>Chan, Vincent</creatorcontrib><title>Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin‐based systems for cell regeneration. Biomacromolecular ultra‐thin films, chemically immobilized on fused silica are ideal experimental models for determining the effect of surface properties on the biophysical cascades following cell seeding. In this study, confocal reflectance interference contrast microscopy (C‐RICM), in conjunction with phase contrast microscopy and fluorescence confocal microscopy, was applied to detect the adhesion contact dynamics of 3T3 fibroblasts on chitosan and gelatin ultrathin films. X‐ray photoelectron spectroscopy (XPS) confirmed the immobilization of chitosan or gelatin on the silanized glass surface. Both the initial cell deformation rate and the change of two‐dimensional spread area of the 3T3 fibroblasts are higher on gelatin‐modified surfaces than on chitosan surfaces. The steady‐state adhesion energy of 3T3 fibroblasts on gelatin film is three times higher than that on chitosan film. Immuno‐staining of actin further demonstrates the different organization of cytoskeleton, likely induced by the change in cell signaling mechanism on the two biomacromolecular surfaces. The better attachment of 3T3 fibroblast to gelatin is postulated to be caused by the presence of adhesive domains on gelatin. C‐RICM images of a typical 3T3 cell on a gelatin‐immobilized substrate.</description><subject>3T3 Cells</subject><subject>Actins - metabolism</subject><subject>adhesion dynamics</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>biophysics</subject><subject>Cell Adhesion</subject><subject>Chitosan - chemistry</subject><subject>Coated Materials, Biocompatible</subject><subject>cytoskeleton</subject><subject>Exact sciences and technology</subject><subject>Fibroblasts - metabolism</subject><subject>Gelatin - chemistry</subject><subject>Gelatin - ultrastructure</subject><subject>Immunohistochemistry</subject><subject>Kinetics</subject><subject>Macromolecular Substances</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Interference</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>polymer</subject><subject>Proteins</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spectrometry, X-Ray Emission</subject><subject>Starch and polysaccharides</subject><subject>Substrate Specificity</subject><subject>Surface Properties</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0E1P3DAQBmALUQGlXDlWucAtW39_HJdtF5CgSNCqR2vWcVRDElM7Ed1_X6NdLb1x8lh6ZsZ-EToleEYwpl96WIUZxVhgTCjbQ0dEElkLYsT-rtbqEH3M-bEQpQ09QIdEUqylJkdoOW9--xziUC3iMIIbq6_rAfrgchXbahlWKa46yGO5DtVFiD24FPvYeTd1kKqHKbXgfP6EPrTQZX-yPY_Rz-W3H4ur-ubu8noxv6kd55TVIB1tyl7aYNPqUmnSagwGZNMwwbjgTFDhuTGae09YIz1vBDe-pZo64dgxOt_MfU7xz-TzaPuQne86GHycspVaEcUxfhcSwxknghY428Dyr5yTb-1zCj2ktSXYvkZsXyO2u4hLw-ft5GnV--aNbzMt4GwLIDvo2gSDC_nNKaINxqo4s3EvofPrd9ba2_nF9f-PqDe9IY_-764X0pOViilhf32_tPdXD7fSqKWl7B9jtqKu</recordid><startdate>20051020</startdate><enddate>20051020</enddate><creator>Fang, Ning</creator><creator>Zhu, Aiping</creator><creator>Chan-Park, Mary B.</creator><creator>Chan, Vincent</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051020</creationdate><title>Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces</title><author>Fang, Ning ; Zhu, Aiping ; Chan-Park, Mary B. ; Chan, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3T3 Cells</topic><topic>Actins - metabolism</topic><topic>adhesion dynamics</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>biophysics</topic><topic>Cell Adhesion</topic><topic>Chitosan - chemistry</topic><topic>Coated Materials, Biocompatible</topic><topic>cytoskeleton</topic><topic>Exact sciences and technology</topic><topic>Fibroblasts - metabolism</topic><topic>Gelatin - chemistry</topic><topic>Gelatin - ultrastructure</topic><topic>Immunohistochemistry</topic><topic>Kinetics</topic><topic>Macromolecular Substances</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Interference</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>polymer</topic><topic>Proteins</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spectrometry, X-Ray Emission</topic><topic>Starch and polysaccharides</topic><topic>Substrate Specificity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Zhu, Aiping</creatorcontrib><creatorcontrib>Chan-Park, Mary B.</creatorcontrib><creatorcontrib>Chan, Vincent</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Ning</au><au>Zhu, Aiping</au><au>Chan-Park, Mary B.</au><au>Chan, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2005-10-20</date><risdate>2005</risdate><volume>5</volume><issue>10</issue><spage>1022</spage><epage>1031</epage><pages>1022-1031</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Biomacromolecules like gelatin and chitosan have emerged as highly versatile biomimetic coatings for applications in tissue engineering. The elucidation of the interfacial kinetics of cell adhesion on biomacromolecular surfaces will pave the way for the rational design of chitosan/gelatin‐based systems for cell regeneration. Biomacromolecular ultra‐thin films, chemically immobilized on fused silica are ideal experimental models for determining the effect of surface properties on the biophysical cascades following cell seeding. In this study, confocal reflectance interference contrast microscopy (C‐RICM), in conjunction with phase contrast microscopy and fluorescence confocal microscopy, was applied to detect the adhesion contact dynamics of 3T3 fibroblasts on chitosan and gelatin ultrathin films. X‐ray photoelectron spectroscopy (XPS) confirmed the immobilization of chitosan or gelatin on the silanized glass surface. Both the initial cell deformation rate and the change of two‐dimensional spread area of the 3T3 fibroblasts are higher on gelatin‐modified surfaces than on chitosan surfaces. The steady‐state adhesion energy of 3T3 fibroblasts on gelatin film is three times higher than that on chitosan film. Immuno‐staining of actin further demonstrates the different organization of cytoskeleton, likely induced by the change in cell signaling mechanism on the two biomacromolecular surfaces. The better attachment of 3T3 fibroblast to gelatin is postulated to be caused by the presence of adhesive domains on gelatin. C‐RICM images of a typical 3T3 cell on a gelatin‐immobilized substrate.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16208681</pmid><doi>10.1002/mabi.200500123</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2005-10, Vol.5 (10), p.1022-1031
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_68717400
source Wiley-Blackwell Read & Publish Collection
subjects 3T3 Cells
Actins - metabolism
adhesion dynamics
Animals
Applied sciences
Biocompatible Materials - chemistry
biophysics
Cell Adhesion
Chitosan - chemistry
Coated Materials, Biocompatible
cytoskeleton
Exact sciences and technology
Fibroblasts - metabolism
Gelatin - chemistry
Gelatin - ultrastructure
Immunohistochemistry
Kinetics
Macromolecular Substances
Mice
Microscopy, Atomic Force
Microscopy, Confocal
Microscopy, Interference
Natural polymers
Physicochemistry of polymers
polymer
Proteins
Silicon Dioxide - chemistry
Spectrometry, X-Ray Emission
Starch and polysaccharides
Substrate Specificity
Surface Properties
title Adhesion Contact Dynamics of Fibroblasts on Biomacromolecular Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adhesion%20Contact%20Dynamics%20of%20Fibroblasts%20on%20Biomacromolecular%20Surfaces&rft.jtitle=Macromolecular%20bioscience&rft.au=Fang,%20Ning&rft.date=2005-10-20&rft.volume=5&rft.issue=10&rft.spage=1022&rft.epage=1031&rft.pages=1022-1031&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.200500123&rft_dat=%3Cproquest_cross%3E68717400%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4423-a6c2d6812d09f8d6881f80a9a6dd3534543525e49984ee13d6e4d549ef282c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19434152&rft_id=info:pmid/16208681&rfr_iscdi=true