Loading…

Epidermal Growth Factor Receptor Acts as a Negative Regulator for Bacterium Nontypeable Haemophilus influenzae-induced Toll-like Receptor 2 Expression via an Src-dependent p38 Mitogen-activated Protein Kinase Signaling Pathway

Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating human Toll-like receptors (TLRs), key host defense receptors that recognize in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-10, Vol.280 (43), p.36185-36194
Main Authors: Mikami, Fumi, Gu, He, Jono, Hirofumi, Andalibi, Ali, Kai, Hirofumi, Li, Jian-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating human Toll-like receptors (TLRs), key host defense receptors that recognize invading bacterial pathogens, however, remains unknown. Here we show for the first time that EGFR acts as a negative regulator for TLR2 induction by the bacterium nontypeable Haemophilus influenzae (NTHi) in vitro and in vivo. The negative regulation of TLR2 induction by EGFR is mediated via an Src-MKK3/6-p38 α/β MAP kinase-dependent mechanism. Moreover, direct activation of EGFR signaling by the bacterium NTHi-derived EGF-like factor appears to be responsible for triggering the downstream Src-MKK3/6-p38 MAPK signaling, which in turn leads to the negative regulation of TLR2 induction. Finally, exogenous EGF increases NTHi invasion of host epithelial cells, thereby demonstrating the biological significance of TLR2 regulation by EGFR signaling. The evidence we provided in the present study may suggest a novel strategy utilized by bacteria to attenuate host defensive and immune response by negatively regulating the expression of host defense receptor TLR2. These studies may bring new insight for fully understanding the important role of EGFR signaling in regulating host defense and immune response by tightly controlling TLR2 induction during bacterial infections.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M503941200