Loading…

Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands

Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)3 (ppz = 1-phenylpyrazolyl-N,C 2‘). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2005-10, Vol.44 (22), p.7992-8003
Main Authors: Sajoto, Tissa, Djurovich, Peter I, Tamayo, Arnold, Yousufuddin, Muhammed, Bau, Robert, Thompson, Mark E, Holmes, Russell J, Forrest, Stephen R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)3 (ppz = 1-phenylpyrazolyl-N,C 2‘). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e., fac-tris(1-[(9,9-dimethyl-2-fluorenyl)]pyrazolyl-N,C 2‘)iridium(III), abbreviated as fac-Ir(flz)3. Crystallographic analysis reveals that both fac-Ir(flz)3 and fac-Ir(ppz)3 have a similar coordination environment around the Ir center. The absorption and emission spectra of fac-Ir(flz)3 are red shifted from those of fac-Ir(ppz)3. The fac-Ir(flz)3 complex gives blue photoluminescence (PL) with a high efficiency (λmax = 480 nm, φPL = 0.38) at room temperature. The lifetime and quantum efficiency were used to determine the radiative and nonradiative rates (1.0 × 104 and 2.0 × 104 s-1, respectively). The second approach utilizes N-heterocyclic carbene (NHC) ligands to form triscyclometalated Ir complexes. Complexes with two different NHC ligands, i.e., iridium tris(1-phenyl-3-methylimidazolin-2-ylidene-C,C 2‘), abbreviated as Ir(pmi)3, and iridium tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C 2‘), abbreviated as Ir(pmb)3, were both isolated as facial and meridianal isomers. Comparison of the crystallographic structures of the fac- and mer-isomers of Ir(pmb)3 with the corresponding Ir(ppz)3 isomers indicates that the imidazolyl-carbene ligand has a stronger trans influence than pyrazolyl and, thus, imparts a greater ligand field strength. Both fac-Ir(pmi)3 and fac-Ir(pmb)3 complexes display strong metal-to-ligand-charge-transfer absorption transitions in the UV (λ = 270−350 nm) and phosphoresce in the near-UV region (E 0 - 0 = 380 nm) at room temperature with φPL values of 0.02 and 0.04, respectively. The radiative decay rates for fac-Ir(pmi)3 and fac-Ir(pmb)3 (5 × 104 s-1 and 18 × 104 s-1, respectively) are somewhat higher than that of fac-Ir(flz)3, but the nonradiative rates are two orders of magnitude faster (i.e., (2−4) × 106 s-1).
ISSN:0020-1669
1520-510X
DOI:10.1021/ic051296i