Loading…
HIV-1 DNA/MVA vaccination reduces the per exposure probability of infection during repeated mucosal SHIV challenges
Historically, HIV vaccines specifically designed to raise cellular immunity resulted in protection from disease progression but not infection when tested in monkeys challenged with a single high virus exposure. An alternative approach, more analogous to human sexual exposures, is to repetitively cha...
Saved in:
Published in: | Virology (New York, N.Y.) N.Y.), 2006-08, Vol.352 (1), p.216-225 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Historically, HIV vaccines specifically designed to raise cellular immunity resulted in protection from disease progression but not infection when tested in monkeys challenged with a single high virus exposure. An alternative approach, more analogous to human sexual exposures, is to repetitively challenge immunized monkeys with a much lower dose of virus until systemic infection is documented. Using these conditions to mimic human sexual transmission, we found that a multi-protein DNA/MVA HIV-1 vaccine is indeed capable of protecting rhesus monkeys against systemic infection when repeatedly challenged with a highly heterologous immunodeficiency virus (SHIV). Furthermore, this repetitive challenge approach allowed us to calculate per-exposure probability of infection, an observed vaccine efficacy of 64%, and undertake a systematic analysis for correlates of protection based on exposures needed to achieve infection. Therefore, improved non-human primate models for vaccine efficacy can provide novel insight and perhaps renew expectations for positive outcomes of human HIV clinical trials. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1016/j.virol.2006.04.005 |