Loading…
Identification of regulatory modules by co-clustering latent variable models: stem cell differentiation
Motivation: An important issue in stem cell biology is to understand how to direct differentiation towards a specific cell type. To elucidate the mechanism, previous studies have focused on identifying the responsible gene regulators, which have, however, failed to provide a systemic view of regulat...
Saved in:
Published in: | Bioinformatics 2006-08, Vol.22 (16), p.2005-2011 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivation: An important issue in stem cell biology is to understand how to direct differentiation towards a specific cell type. To elucidate the mechanism, previous studies have focused on identifying the responsible gene regulators, which have, however, failed to provide a systemic view of regulatory modules. To obtain a unified description of the regulatory modules, we characterized major stem cell species by employing a co-clustering latent variable model (LVM). The LVM-based method allowed us to elucidate the cell type-specific transcription factors, using genomic sequences as well as expression profiles. Results: We used a list of genes enriched in each of 21 stem cell subpopulations, and their upstream genomic sequences. The LVM-based study allowed us to uncover the regulatory modules for each stem cell cluster, e.g. GABP and E2F for the proliferation phase, and Ap2α and Ap2γ for the quiescence phase. Furthermore, the identities of the stem cell clusters were well revealed by the constituent genes that were directly targeted by the modules. Consequently, our analytical framework was demonstrated to be useful through a detailed case study of stem cell differentiation and can be applied to problems with similar characteristics. Contact:btzhang@bi.snu.ac.kr, rhseong@snu.ac.kr Supplementary Information: Supplementary data are available at . |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btl343 |