Loading…

CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE

SUMMARY 1 The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the perio...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental pharmacology & physiology 2006-08, Vol.33 (8), p.663-672
Main Authors: Chen, Sheng-Hsien, Niu, Ko-Chi, Lin, Mao-Tsun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3
cites cdi_FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3
container_end_page 672
container_issue 8
container_start_page 663
container_title Clinical and experimental pharmacology & physiology
container_volume 33
creator Chen, Sheng-Hsien
Niu, Ko-Chi
Lin, Mao-Tsun
description SUMMARY 1 The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959–2005. 2 All heat‐stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the dignosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3 These physiological dysfunctions and survival during heat stroke can be improved by whole‐body or brain cooling therapy adopted immediately after the onset of heat stroke. 4 However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti‐inflammatory drugs, free radical scavengers or interleukin‐1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5 In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of α‐tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu‐opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock portein 72 preconditioning. 6 There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
doi_str_mv 10.1111/j.1440-1681.2006.04429.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68729512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68729512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3</originalsourceid><addsrcrecordid>eNqNkE9v2yAchtG0ac26fYWJ0272wICxDzswjzjRIrvCpFNPCNtYSpYsrWm09NsXN1F3HRf-vO_zQ3oAgBjFOKyv2xhTiiKcZjhOEEpjRGmSx6c3YPYavAUzRBCLcMbRFfjg_RYhxFBK3oOrkOeMET4DVSGV_K7qW9EU65VQ8MddM19XhV7WFVw2UFRQaK1EeLiVUAtVSg3ntYJ6IZW4uYPLCi6k0LDRqv4pP4J3g9159-myX4P1XOpiEa3qclmIVdRRxvKoTXjS5ZbilPQYDdb2BOWkZTTjlnKXocFRRhHHuAsxydsh63HfY0wYZpa25Bp8Oc-9Hw8PR-cfzX7jO7fb2T_ucPQmzXiSM5yEYnYuduPB-9EN5n7c7O34ZDAyk0uzNZMyMykzk0vz4tKcAvr58sex3bv-H3iRFwrfzoW_m517-u_BppA30ynw0Znf-Ed3euXt-NuknHBmflWlKXlDVVqGC3kGudOJMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68729512</pqid></control><display><type>article</type><title>CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>EBSCOhost SPORTDiscus - Ebooks</source><creator>Chen, Sheng-Hsien ; Niu, Ko-Chi ; Lin, Mao-Tsun</creator><creatorcontrib>Chen, Sheng-Hsien ; Niu, Ko-Chi ; Lin, Mao-Tsun</creatorcontrib><description>SUMMARY 1 The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959–2005. 2 All heat‐stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the dignosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3 These physiological dysfunctions and survival during heat stroke can be improved by whole‐body or brain cooling therapy adopted immediately after the onset of heat stroke. 4 However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti‐inflammatory drugs, free radical scavengers or interleukin‐1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5 In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of α‐tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu‐opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock portein 72 preconditioning. 6 There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/j.1440-1681.2006.04429.x</identifier><identifier>PMID: 16895537</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Animals ; Antihypertensive Agents - pharmacology ; Antihypertensive Agents - therapeutic use ; Blood Coagulation - drug effects ; Brain - blood supply ; Brain - drug effects ; Brain - enzymology ; brain ischaemia ; Brain Ischemia - blood ; Brain Ischemia - drug therapy ; Brain Ischemia - enzymology ; Brain Ischemia - therapy ; Cerebrovascular Circulation ; Cryotherapy - methods ; Disease Models, Animal ; Endothelial Cells - transplantation ; Endothelin Receptor Antagonists ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - therapeutic use ; Fluid Therapy - methods ; Free Radical Scavengers - pharmacology ; Free Radical Scavengers - therapeutic use ; Heat Stroke - blood ; Heat Stroke - drug therapy ; Heat Stroke - enzymology ; Heat Stroke - therapy ; heatstroke ; Humans ; Hyperbaric Oxygenation ; hypotension ; intracranial hypertension ; Nitric Oxide Synthase - antagonists &amp; inhibitors ; Nitric Oxide Synthase - metabolism ; Peptides, Cyclic - pharmacology ; Peptides, Cyclic - therapeutic use ; Receptors, Endothelin - metabolism</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2006-08, Vol.33 (8), p.663-672</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3</citedby><cites>FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16895537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Sheng-Hsien</creatorcontrib><creatorcontrib>Niu, Ko-Chi</creatorcontrib><creatorcontrib>Lin, Mao-Tsun</creatorcontrib><title>CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>SUMMARY 1 The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959–2005. 2 All heat‐stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the dignosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3 These physiological dysfunctions and survival during heat stroke can be improved by whole‐body or brain cooling therapy adopted immediately after the onset of heat stroke. 4 However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti‐inflammatory drugs, free radical scavengers or interleukin‐1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5 In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of α‐tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu‐opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock portein 72 preconditioning. 6 There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.</description><subject>Animals</subject><subject>Antihypertensive Agents - pharmacology</subject><subject>Antihypertensive Agents - therapeutic use</subject><subject>Blood Coagulation - drug effects</subject><subject>Brain - blood supply</subject><subject>Brain - drug effects</subject><subject>Brain - enzymology</subject><subject>brain ischaemia</subject><subject>Brain Ischemia - blood</subject><subject>Brain Ischemia - drug therapy</subject><subject>Brain Ischemia - enzymology</subject><subject>Brain Ischemia - therapy</subject><subject>Cerebrovascular Circulation</subject><subject>Cryotherapy - methods</subject><subject>Disease Models, Animal</subject><subject>Endothelial Cells - transplantation</subject><subject>Endothelin Receptor Antagonists</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - therapeutic use</subject><subject>Fluid Therapy - methods</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Free Radical Scavengers - therapeutic use</subject><subject>Heat Stroke - blood</subject><subject>Heat Stroke - drug therapy</subject><subject>Heat Stroke - enzymology</subject><subject>Heat Stroke - therapy</subject><subject>heatstroke</subject><subject>Humans</subject><subject>Hyperbaric Oxygenation</subject><subject>hypotension</subject><subject>intracranial hypertension</subject><subject>Nitric Oxide Synthase - antagonists &amp; inhibitors</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Peptides, Cyclic - pharmacology</subject><subject>Peptides, Cyclic - therapeutic use</subject><subject>Receptors, Endothelin - metabolism</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v2yAchtG0ac26fYWJ0272wICxDzswjzjRIrvCpFNPCNtYSpYsrWm09NsXN1F3HRf-vO_zQ3oAgBjFOKyv2xhTiiKcZjhOEEpjRGmSx6c3YPYavAUzRBCLcMbRFfjg_RYhxFBK3oOrkOeMET4DVSGV_K7qW9EU65VQ8MddM19XhV7WFVw2UFRQaK1EeLiVUAtVSg3ntYJ6IZW4uYPLCi6k0LDRqv4pP4J3g9159-myX4P1XOpiEa3qclmIVdRRxvKoTXjS5ZbilPQYDdb2BOWkZTTjlnKXocFRRhHHuAsxydsh63HfY0wYZpa25Bp8Oc-9Hw8PR-cfzX7jO7fb2T_ucPQmzXiSM5yEYnYuduPB-9EN5n7c7O34ZDAyk0uzNZMyMykzk0vz4tKcAvr58sex3bv-H3iRFwrfzoW_m517-u_BppA30ynw0Znf-Ed3euXt-NuknHBmflWlKXlDVVqGC3kGudOJMQ</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Chen, Sheng-Hsien</creator><creator>Niu, Ko-Chi</creator><creator>Lin, Mao-Tsun</creator><general>Blackwell Publishing Asia</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200608</creationdate><title>CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE</title><author>Chen, Sheng-Hsien ; Niu, Ko-Chi ; Lin, Mao-Tsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Antihypertensive Agents - pharmacology</topic><topic>Antihypertensive Agents - therapeutic use</topic><topic>Blood Coagulation - drug effects</topic><topic>Brain - blood supply</topic><topic>Brain - drug effects</topic><topic>Brain - enzymology</topic><topic>brain ischaemia</topic><topic>Brain Ischemia - blood</topic><topic>Brain Ischemia - drug therapy</topic><topic>Brain Ischemia - enzymology</topic><topic>Brain Ischemia - therapy</topic><topic>Cerebrovascular Circulation</topic><topic>Cryotherapy - methods</topic><topic>Disease Models, Animal</topic><topic>Endothelial Cells - transplantation</topic><topic>Endothelin Receptor Antagonists</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - therapeutic use</topic><topic>Fluid Therapy - methods</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Free Radical Scavengers - therapeutic use</topic><topic>Heat Stroke - blood</topic><topic>Heat Stroke - drug therapy</topic><topic>Heat Stroke - enzymology</topic><topic>Heat Stroke - therapy</topic><topic>heatstroke</topic><topic>Humans</topic><topic>Hyperbaric Oxygenation</topic><topic>hypotension</topic><topic>intracranial hypertension</topic><topic>Nitric Oxide Synthase - antagonists &amp; inhibitors</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Peptides, Cyclic - pharmacology</topic><topic>Peptides, Cyclic - therapeutic use</topic><topic>Receptors, Endothelin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sheng-Hsien</creatorcontrib><creatorcontrib>Niu, Ko-Chi</creatorcontrib><creatorcontrib>Lin, Mao-Tsun</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sheng-Hsien</au><au>Niu, Ko-Chi</au><au>Lin, Mao-Tsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2006-08</date><risdate>2006</risdate><volume>33</volume><issue>8</issue><spage>663</spage><epage>672</epage><pages>663-672</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>SUMMARY 1 The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959–2005. 2 All heat‐stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the dignosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3 These physiological dysfunctions and survival during heat stroke can be improved by whole‐body or brain cooling therapy adopted immediately after the onset of heat stroke. 4 However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti‐inflammatory drugs, free radical scavengers or interleukin‐1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5 In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of α‐tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu‐opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock portein 72 preconditioning. 6 There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>16895537</pmid><doi>10.1111/j.1440-1681.2006.04429.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2006-08, Vol.33 (8), p.663-672
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_miscellaneous_68729512
source Wiley-Blackwell Read & Publish Collection; EBSCOhost SPORTDiscus - Ebooks
subjects Animals
Antihypertensive Agents - pharmacology
Antihypertensive Agents - therapeutic use
Blood Coagulation - drug effects
Brain - blood supply
Brain - drug effects
Brain - enzymology
brain ischaemia
Brain Ischemia - blood
Brain Ischemia - drug therapy
Brain Ischemia - enzymology
Brain Ischemia - therapy
Cerebrovascular Circulation
Cryotherapy - methods
Disease Models, Animal
Endothelial Cells - transplantation
Endothelin Receptor Antagonists
Enzyme Inhibitors - pharmacology
Enzyme Inhibitors - therapeutic use
Fluid Therapy - methods
Free Radical Scavengers - pharmacology
Free Radical Scavengers - therapeutic use
Heat Stroke - blood
Heat Stroke - drug therapy
Heat Stroke - enzymology
Heat Stroke - therapy
heatstroke
Humans
Hyperbaric Oxygenation
hypotension
intracranial hypertension
Nitric Oxide Synthase - antagonists & inhibitors
Nitric Oxide Synthase - metabolism
Peptides, Cyclic - pharmacology
Peptides, Cyclic - therapeutic use
Receptors, Endothelin - metabolism
title CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CEREBROVASCULAR%20DYSFUNCTION%20IS%20AN%20ATTRACTIVE%20TARGET%20FOR%20THERAPY%20IN%20HEAT%20STROKE&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Chen,%20Sheng-Hsien&rft.date=2006-08&rft.volume=33&rft.issue=8&rft.spage=663&rft.epage=672&rft.pages=663-672&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/j.1440-1681.2006.04429.x&rft_dat=%3Cproquest_cross%3E68729512%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4559-b272c9a4163d10faad3093b5487a47e80fe4540711c10f39bf8d1dd113515a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68729512&rft_id=info:pmid/16895537&rfr_iscdi=true