Loading…

Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons

The cerebellar cortex consists of a small set of neuronal cell types interconnected in a highly stereotyped way. While the development of cerebellar cortical projection neurons, i.e. Purkinje cells, and that of granule cells has been elucidated in considerable detail, that of cerebellar cortical inh...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2006-07, Vol.24 (2), p.466-478
Main Authors: Weisheit, Gunnar, Gliem, Michael, Endl, Elmar, Pfeffer, Peter L., Busslinger, Meinrad, Schilling, Karl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3
cites cdi_FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3
container_end_page 478
container_issue 2
container_start_page 466
container_title The European journal of neuroscience
container_volume 24
creator Weisheit, Gunnar
Gliem, Michael
Endl, Elmar
Pfeffer, Peter L.
Busslinger, Meinrad
Schilling, Karl
description The cerebellar cortex consists of a small set of neuronal cell types interconnected in a highly stereotyped way. While the development of cerebellar cortical projection neurons, i.e. Purkinje cells, and that of granule cells has been elucidated in considerable detail, that of cerebellar cortical inhibitory interneurons is still rather fragmentarily understood. Here, we use mice expressing green fluorescent protein (GFP) from the Pax2 locus to analyse the ontogenesis of these cells. Numbers of Pax2‐positive inhibitory interneuronal precursors increase following a classical sigmoidal growth curve to yield a total of some 905.000 ± 77.000 cells. Maximal cell increase occurs at about postnatal day (P)5.4, and some 75% of all inhibitory interneurons are generated prior to P7. Conjoint analysis of the developmental accruement of Pax2‐GFP‐positive cells and their cell cycle distribution reveals that, at least at P0 and P3, the numerical increase of these cells results primarily from proliferation of a Pax2‐negative precursor population and suggests that Pax2 expression begins at or around the final mitosis. Following their terminal mitosis, inhibitory cerebellar cortical interneurons go through a protracted quiescent phase in which they maintain expression of the cell cycle marker Ki‐67. During this phase, they translocate into the nascent molecular layer, where they stall next to premigratory granule cell precursors without penetrating this population of cells. These observations provide a quantitative description of cerebellar cortical inhibitory interneuron genesis and early differentiation, and define Pax2 as a marker expressed in basket and stellate cells, from around their final mitosis to their incipient histogenetic integration.
doi_str_mv 10.1111/j.1460-9568.2006.04915.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68732872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68732872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3</originalsourceid><addsrcrecordid>eNqNkctu1DAYhS1ERaeFV0BesSLBl_gSJBaoKsNl1IIEojvLif9Apkk8tR0606cn6YzaJXjjX_L3HVs-CGFKcjqtN-ucFpJkpZA6Z4TInBQlFfn2CVo8HDxFC1IKnmkqr47RSYxrQoiWhXiGjqksCdeiWKC7rz6mwSbbYQd_oPObHoaEfYPTb8D9GNoBcA0BKug6G3DtQ4LtW9z40NvU-gHbwWGwodth18YNhDhFTXpl4zWk1zimWUxwzy1996vFA4zBD_E5OmpsF-HFYT9FPz6cfz_7mK0ul5_O3q-yWhAmMlUXgjteqlpK1jhwVgFXjoK2VFWW80YyQsGVwEBDw3kpReEqp0utK2Frfope7XM3wd-MEJPp21jPrxrAj9FIrTjTiv0TZERxLvQM6j1YBx9jgMZsQtvbsDOUmLkgszZzD2buwcwFmfuCzHZSXx7uGKse3KN4aGQC3u2B27aD3X8Hm_PPF_M0-dneb6ef3z74NlwbqbgS5ufF0hQr9uXq22oa-F-gsbCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20733582</pqid></control><display><type>article</type><title>Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Weisheit, Gunnar ; Gliem, Michael ; Endl, Elmar ; Pfeffer, Peter L. ; Busslinger, Meinrad ; Schilling, Karl</creator><creatorcontrib>Weisheit, Gunnar ; Gliem, Michael ; Endl, Elmar ; Pfeffer, Peter L. ; Busslinger, Meinrad ; Schilling, Karl</creatorcontrib><description>The cerebellar cortex consists of a small set of neuronal cell types interconnected in a highly stereotyped way. While the development of cerebellar cortical projection neurons, i.e. Purkinje cells, and that of granule cells has been elucidated in considerable detail, that of cerebellar cortical inhibitory interneurons is still rather fragmentarily understood. Here, we use mice expressing green fluorescent protein (GFP) from the Pax2 locus to analyse the ontogenesis of these cells. Numbers of Pax2‐positive inhibitory interneuronal precursors increase following a classical sigmoidal growth curve to yield a total of some 905.000 ± 77.000 cells. Maximal cell increase occurs at about postnatal day (P)5.4, and some 75% of all inhibitory interneurons are generated prior to P7. Conjoint analysis of the developmental accruement of Pax2‐GFP‐positive cells and their cell cycle distribution reveals that, at least at P0 and P3, the numerical increase of these cells results primarily from proliferation of a Pax2‐negative precursor population and suggests that Pax2 expression begins at or around the final mitosis. Following their terminal mitosis, inhibitory cerebellar cortical interneurons go through a protracted quiescent phase in which they maintain expression of the cell cycle marker Ki‐67. During this phase, they translocate into the nascent molecular layer, where they stall next to premigratory granule cell precursors without penetrating this population of cells. These observations provide a quantitative description of cerebellar cortical inhibitory interneuron genesis and early differentiation, and define Pax2 as a marker expressed in basket and stellate cells, from around their final mitosis to their incipient histogenetic integration.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2006.04915.x</identifier><identifier>PMID: 16903854</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aging - physiology ; Animals ; Animals, Newborn ; basket cell ; Biomarkers - metabolism ; Cell Differentiation - physiology ; Cell Movement - physiology ; Cell Proliferation ; Cerebellar Cortex - cytology ; Cerebellar Cortex - growth &amp; development ; cerebellum ; development ; Gene Expression Regulation, Developmental - physiology ; Golgi neuron ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; inhibitory interneuron ; Interneurons - cytology ; Interneurons - metabolism ; Ki-67 Antigen - genetics ; Ki-67 Antigen - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neural Inhibition - physiology ; Neural Pathways - cytology ; Neural Pathways - growth &amp; development ; PAX2 Transcription Factor - genetics ; PAX2 Transcription Factor - metabolism ; proliferation ; stellate cell</subject><ispartof>The European journal of neuroscience, 2006-07, Vol.24 (2), p.466-478</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3</citedby><cites>FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16903854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisheit, Gunnar</creatorcontrib><creatorcontrib>Gliem, Michael</creatorcontrib><creatorcontrib>Endl, Elmar</creatorcontrib><creatorcontrib>Pfeffer, Peter L.</creatorcontrib><creatorcontrib>Busslinger, Meinrad</creatorcontrib><creatorcontrib>Schilling, Karl</creatorcontrib><title>Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>The cerebellar cortex consists of a small set of neuronal cell types interconnected in a highly stereotyped way. While the development of cerebellar cortical projection neurons, i.e. Purkinje cells, and that of granule cells has been elucidated in considerable detail, that of cerebellar cortical inhibitory interneurons is still rather fragmentarily understood. Here, we use mice expressing green fluorescent protein (GFP) from the Pax2 locus to analyse the ontogenesis of these cells. Numbers of Pax2‐positive inhibitory interneuronal precursors increase following a classical sigmoidal growth curve to yield a total of some 905.000 ± 77.000 cells. Maximal cell increase occurs at about postnatal day (P)5.4, and some 75% of all inhibitory interneurons are generated prior to P7. Conjoint analysis of the developmental accruement of Pax2‐GFP‐positive cells and their cell cycle distribution reveals that, at least at P0 and P3, the numerical increase of these cells results primarily from proliferation of a Pax2‐negative precursor population and suggests that Pax2 expression begins at or around the final mitosis. Following their terminal mitosis, inhibitory cerebellar cortical interneurons go through a protracted quiescent phase in which they maintain expression of the cell cycle marker Ki‐67. During this phase, they translocate into the nascent molecular layer, where they stall next to premigratory granule cell precursors without penetrating this population of cells. These observations provide a quantitative description of cerebellar cortical inhibitory interneuron genesis and early differentiation, and define Pax2 as a marker expressed in basket and stellate cells, from around their final mitosis to their incipient histogenetic integration.</description><subject>Aging - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>basket cell</subject><subject>Biomarkers - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cell Proliferation</subject><subject>Cerebellar Cortex - cytology</subject><subject>Cerebellar Cortex - growth &amp; development</subject><subject>cerebellum</subject><subject>development</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Golgi neuron</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>inhibitory interneuron</subject><subject>Interneurons - cytology</subject><subject>Interneurons - metabolism</subject><subject>Ki-67 Antigen - genetics</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - growth &amp; development</subject><subject>PAX2 Transcription Factor - genetics</subject><subject>PAX2 Transcription Factor - metabolism</subject><subject>proliferation</subject><subject>stellate cell</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1DAYhS1ERaeFV0BesSLBl_gSJBaoKsNl1IIEojvLif9Apkk8tR0606cn6YzaJXjjX_L3HVs-CGFKcjqtN-ucFpJkpZA6Z4TInBQlFfn2CVo8HDxFC1IKnmkqr47RSYxrQoiWhXiGjqksCdeiWKC7rz6mwSbbYQd_oPObHoaEfYPTb8D9GNoBcA0BKug6G3DtQ4LtW9z40NvU-gHbwWGwodth18YNhDhFTXpl4zWk1zimWUxwzy1996vFA4zBD_E5OmpsF-HFYT9FPz6cfz_7mK0ul5_O3q-yWhAmMlUXgjteqlpK1jhwVgFXjoK2VFWW80YyQsGVwEBDw3kpReEqp0utK2Frfope7XM3wd-MEJPp21jPrxrAj9FIrTjTiv0TZERxLvQM6j1YBx9jgMZsQtvbsDOUmLkgszZzD2buwcwFmfuCzHZSXx7uGKse3KN4aGQC3u2B27aD3X8Hm_PPF_M0-dneb6ef3z74NlwbqbgS5ufF0hQr9uXq22oa-F-gsbCW</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Weisheit, Gunnar</creator><creator>Gliem, Michael</creator><creator>Endl, Elmar</creator><creator>Pfeffer, Peter L.</creator><creator>Busslinger, Meinrad</creator><creator>Schilling, Karl</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons</title><author>Weisheit, Gunnar ; Gliem, Michael ; Endl, Elmar ; Pfeffer, Peter L. ; Busslinger, Meinrad ; Schilling, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aging - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>basket cell</topic><topic>Biomarkers - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cell Proliferation</topic><topic>Cerebellar Cortex - cytology</topic><topic>Cerebellar Cortex - growth &amp; development</topic><topic>cerebellum</topic><topic>development</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Golgi neuron</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>inhibitory interneuron</topic><topic>Interneurons - cytology</topic><topic>Interneurons - metabolism</topic><topic>Ki-67 Antigen - genetics</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - growth &amp; development</topic><topic>PAX2 Transcription Factor - genetics</topic><topic>PAX2 Transcription Factor - metabolism</topic><topic>proliferation</topic><topic>stellate cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisheit, Gunnar</creatorcontrib><creatorcontrib>Gliem, Michael</creatorcontrib><creatorcontrib>Endl, Elmar</creatorcontrib><creatorcontrib>Pfeffer, Peter L.</creatorcontrib><creatorcontrib>Busslinger, Meinrad</creatorcontrib><creatorcontrib>Schilling, Karl</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisheit, Gunnar</au><au>Gliem, Michael</au><au>Endl, Elmar</au><au>Pfeffer, Peter L.</au><au>Busslinger, Meinrad</au><au>Schilling, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2006-07</date><risdate>2006</risdate><volume>24</volume><issue>2</issue><spage>466</spage><epage>478</epage><pages>466-478</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>The cerebellar cortex consists of a small set of neuronal cell types interconnected in a highly stereotyped way. While the development of cerebellar cortical projection neurons, i.e. Purkinje cells, and that of granule cells has been elucidated in considerable detail, that of cerebellar cortical inhibitory interneurons is still rather fragmentarily understood. Here, we use mice expressing green fluorescent protein (GFP) from the Pax2 locus to analyse the ontogenesis of these cells. Numbers of Pax2‐positive inhibitory interneuronal precursors increase following a classical sigmoidal growth curve to yield a total of some 905.000 ± 77.000 cells. Maximal cell increase occurs at about postnatal day (P)5.4, and some 75% of all inhibitory interneurons are generated prior to P7. Conjoint analysis of the developmental accruement of Pax2‐GFP‐positive cells and their cell cycle distribution reveals that, at least at P0 and P3, the numerical increase of these cells results primarily from proliferation of a Pax2‐negative precursor population and suggests that Pax2 expression begins at or around the final mitosis. Following their terminal mitosis, inhibitory cerebellar cortical interneurons go through a protracted quiescent phase in which they maintain expression of the cell cycle marker Ki‐67. During this phase, they translocate into the nascent molecular layer, where they stall next to premigratory granule cell precursors without penetrating this population of cells. These observations provide a quantitative description of cerebellar cortical inhibitory interneuron genesis and early differentiation, and define Pax2 as a marker expressed in basket and stellate cells, from around their final mitosis to their incipient histogenetic integration.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16903854</pmid><doi>10.1111/j.1460-9568.2006.04915.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2006-07, Vol.24 (2), p.466-478
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_68732872
source Wiley-Blackwell Read & Publish Collection
subjects Aging - physiology
Animals
Animals, Newborn
basket cell
Biomarkers - metabolism
Cell Differentiation - physiology
Cell Movement - physiology
Cell Proliferation
Cerebellar Cortex - cytology
Cerebellar Cortex - growth & development
cerebellum
development
Gene Expression Regulation, Developmental - physiology
Golgi neuron
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
inhibitory interneuron
Interneurons - cytology
Interneurons - metabolism
Ki-67 Antigen - genetics
Ki-67 Antigen - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neural Inhibition - physiology
Neural Pathways - cytology
Neural Pathways - growth & development
PAX2 Transcription Factor - genetics
PAX2 Transcription Factor - metabolism
proliferation
stellate cell
title Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postnatal%20development%20of%20the%20murine%20cerebellar%20cortex:%20formation%20and%20early%20dispersal%20of%20basket,%20stellate%20and%20Golgi%20neurons&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Weisheit,%20Gunnar&rft.date=2006-07&rft.volume=24&rft.issue=2&rft.spage=466&rft.epage=478&rft.pages=466-478&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2006.04915.x&rft_dat=%3Cproquest_cross%3E68732872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5025-7c453d397c662fdeda7e37d1e8a17ba33f6201ed9e2e8ef339654dbd8988b5ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20733582&rft_id=info:pmid/16903854&rfr_iscdi=true