Loading…
putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis
Cation transport is thought to be an important process for ion homeostasis in plant cells. Here, we report that a soybean putative cation/proton antiporter GmCAX1 may be a mediator of this process. GmCAX1 is expressed in all tissues of the soybean plants but at a lower level in roots. Its expression...
Saved in:
Published in: | Plant molecular biology 2005-11, Vol.59 (5), p.809-820 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cation transport is thought to be an important process for ion homeostasis in plant cells. Here, we report that a soybean putative cation/proton antiporter GmCAX1 may be a mediator of this process. GmCAX1 is expressed in all tissues of the soybean plants but at a lower level in roots. Its expression was induced by PEG, ABA, Ca(2+), Na(+) and Li(+) treatments. The GmCAX1-GFP fusion protein was mainly localized in plasma membrane of the transgenic Arabidopsis plant cells and onion epidermal cells. Transgenic Arabidopsis plants overexpressing GmCAX1 accumulated less Na(+), K(+), and Li(+), and were more tolerant to elevated Li(+) and Na(+) levels during germination when compared with the controls. These results suggest that GmCAX1 may function as an antiporter for Na(+), K(+) and Li(+). Modulation of this antiporter may be beneficial for regulation of ion homeostasis and thus plant salt tolerance. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/s11103-005-1386-0 |