Loading…

Energy use and animal abundance in litter and soil communities

Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production...

Full description

Saved in:
Bibliographic Details
Published in:Ecology (Durham) 2006-07, Vol.87 (7), p.1650-1658
Main Author: Meehan, Timothy D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3
cites cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3
container_end_page 1658
container_issue 7
container_start_page 1650
container_title Ecology (Durham)
container_volume 87
creator Meehan, Timothy D.
description Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.
doi_str_mv 10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68766150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20069123</jstor_id><sourcerecordid>20069123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</originalsourceid><addsrcrecordid>eNqdkV-L1DAUxYMo7uzqR1CLsKIPHe9N2_xREIZhVhcWFtR5EJGQSdMlQ9usSYvMtze1wy74IhgIeTi_nNycQ8gSYYlCwlsApLlklXhNAdgbwb8jq-CdHbXW7gddwtL49_QBWaAsZC6Rw0OyuLt0Qk5j3ENaWIrH5ASZpLRAtiAfNr0NN4dsjDbTfZ2263Sb6d3Y17o3NnN91rphsOGPHL1rM-O7buzd4Gx8Qh41uo326fE8I9uLzdf1p_zq-uPlenWVGyYAclqB3aGmKC2nAqTg0mhNixIqUxey0ogSpaQN1IUwrGp4ReuSYS3AImhbnJFXs-9t8D9HGwfVuWhs2-re-jEqJjhjWME_QZRUcgYT-PIvcO_H0KdPKJoS52XBMEEXM2SCjzHYRt2GlE84KAQ19aKmiNUUsZp6UYKrqRe12a5Wq0tFFaj1taLJ6PnxtXHX2fre5lhEAs6PgI5Gt01I4bt4z3EpBQJP3OeZ--Vae_jPcdRm_W3SBeeTnEyfzab7OPhwZzohEmmR9Bez3miv9E1Ig22_UMACEGlZpTR_A6eWwJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218974361</pqid></control><display><type>article</type><title>Energy use and animal abundance in litter and soil communities</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Meehan, Timothy D.</creator><creatorcontrib>Meehan, Timothy D.</creatorcontrib><description>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2</identifier><identifier>PMID: 16922316</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>abundance ; ambient temperature ; Animal and plant ecology ; Animal physiology ; Animal, plant and microbial ecology ; Animals ; arthropods ; Biological and medical sciences ; body mass ; Body size ; Body temperature ; body weight ; carbon ; Energy Metabolism ; Food Chain ; Food chains ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; International Biological Programme ; Invertebrates ; Invertebrates - physiology ; Marine ecology ; mathematical models ; metabolic scaling theory ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Modeling ; Models, Biological ; Net primary production ; plant litter ; Population Dynamics ; Population ecology ; population size ; prediction ; primary productivity ; Soil ; soil arthropods ; Soil ecology ; Soil invertebrates ; Synecology ; Temperature ; Terrestrial ecosystems ; Theory ; Trees - physiology ; trophic level ; Trophic levels ; trophic relationships</subject><ispartof>Ecology (Durham), 2006-07, Vol.87 (7), p.1650-1658</ispartof><rights>Copyright 2006 Ecological Society of America</rights><rights>2006 by the Ecological Society of America</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Ecological Society of America Jul 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</citedby><cites>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20069123$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20069123$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17998107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16922316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meehan, Timothy D.</creatorcontrib><title>Energy use and animal abundance in litter and soil communities</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</description><subject>abundance</subject><subject>ambient temperature</subject><subject>Animal and plant ecology</subject><subject>Animal physiology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>arthropods</subject><subject>Biological and medical sciences</subject><subject>body mass</subject><subject>Body size</subject><subject>Body temperature</subject><subject>body weight</subject><subject>carbon</subject><subject>Energy Metabolism</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>International Biological Programme</subject><subject>Invertebrates</subject><subject>Invertebrates - physiology</subject><subject>Marine ecology</subject><subject>mathematical models</subject><subject>metabolic scaling theory</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Net primary production</subject><subject>plant litter</subject><subject>Population Dynamics</subject><subject>Population ecology</subject><subject>population size</subject><subject>prediction</subject><subject>primary productivity</subject><subject>Soil</subject><subject>soil arthropods</subject><subject>Soil ecology</subject><subject>Soil invertebrates</subject><subject>Synecology</subject><subject>Temperature</subject><subject>Terrestrial ecosystems</subject><subject>Theory</subject><subject>Trees - physiology</subject><subject>trophic level</subject><subject>Trophic levels</subject><subject>trophic relationships</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqdkV-L1DAUxYMo7uzqR1CLsKIPHe9N2_xREIZhVhcWFtR5EJGQSdMlQ9usSYvMtze1wy74IhgIeTi_nNycQ8gSYYlCwlsApLlklXhNAdgbwb8jq-CdHbXW7gddwtL49_QBWaAsZC6Rw0OyuLt0Qk5j3ENaWIrH5ASZpLRAtiAfNr0NN4dsjDbTfZ2263Sb6d3Y17o3NnN91rphsOGPHL1rM-O7buzd4Gx8Qh41uo326fE8I9uLzdf1p_zq-uPlenWVGyYAclqB3aGmKC2nAqTg0mhNixIqUxey0ogSpaQN1IUwrGp4ReuSYS3AImhbnJFXs-9t8D9HGwfVuWhs2-re-jEqJjhjWME_QZRUcgYT-PIvcO_H0KdPKJoS52XBMEEXM2SCjzHYRt2GlE84KAQ19aKmiNUUsZp6UYKrqRe12a5Wq0tFFaj1taLJ6PnxtXHX2fre5lhEAs6PgI5Gt01I4bt4z3EpBQJP3OeZ--Vae_jPcdRm_W3SBeeTnEyfzab7OPhwZzohEmmR9Bez3miv9E1Ig22_UMACEGlZpTR_A6eWwJ8</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Meehan, Timothy D.</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Energy use and animal abundance in litter and soil communities</title><author>Meehan, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>abundance</topic><topic>ambient temperature</topic><topic>Animal and plant ecology</topic><topic>Animal physiology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>arthropods</topic><topic>Biological and medical sciences</topic><topic>body mass</topic><topic>Body size</topic><topic>Body temperature</topic><topic>body weight</topic><topic>carbon</topic><topic>Energy Metabolism</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>International Biological Programme</topic><topic>Invertebrates</topic><topic>Invertebrates - physiology</topic><topic>Marine ecology</topic><topic>mathematical models</topic><topic>metabolic scaling theory</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Net primary production</topic><topic>plant litter</topic><topic>Population Dynamics</topic><topic>Population ecology</topic><topic>population size</topic><topic>prediction</topic><topic>primary productivity</topic><topic>Soil</topic><topic>soil arthropods</topic><topic>Soil ecology</topic><topic>Soil invertebrates</topic><topic>Synecology</topic><topic>Temperature</topic><topic>Terrestrial ecosystems</topic><topic>Theory</topic><topic>Trees - physiology</topic><topic>trophic level</topic><topic>Trophic levels</topic><topic>trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meehan, Timothy D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meehan, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy use and animal abundance in litter and soil communities</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2006-07</date><risdate>2006</risdate><volume>87</volume><issue>7</issue><spage>1650</spage><epage>1658</epage><pages>1650-1658</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>16922316</pmid><doi>10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2006-07, Vol.87 (7), p.1650-1658
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_68766150
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects abundance
ambient temperature
Animal and plant ecology
Animal physiology
Animal, plant and microbial ecology
Animals
arthropods
Biological and medical sciences
body mass
Body size
Body temperature
body weight
carbon
Energy Metabolism
Food Chain
Food chains
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
International Biological Programme
Invertebrates
Invertebrates - physiology
Marine ecology
mathematical models
metabolic scaling theory
Methods and techniques (sampling, tagging, trapping, modelling...)
Modeling
Models, Biological
Net primary production
plant litter
Population Dynamics
Population ecology
population size
prediction
primary productivity
Soil
soil arthropods
Soil ecology
Soil invertebrates
Synecology
Temperature
Terrestrial ecosystems
Theory
Trees - physiology
trophic level
Trophic levels
trophic relationships
title Energy use and animal abundance in litter and soil communities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20use%20and%20animal%20abundance%20in%20litter%20and%20soil%20communities&rft.jtitle=Ecology%20(Durham)&rft.au=Meehan,%20Timothy%20D.&rft.date=2006-07&rft.volume=87&rft.issue=7&rft.spage=1650&rft.epage=1658&rft.pages=1650-1658&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/0012-9658(2006)87%5B1650:euaaai%5D2.0.co;2&rft_dat=%3Cjstor_proqu%3E20069123%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218974361&rft_id=info:pmid/16922316&rft_jstor_id=20069123&rfr_iscdi=true