Loading…
Energy use and animal abundance in litter and soil communities
Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production...
Saved in:
Published in: | Ecology (Durham) 2006-07, Vol.87 (7), p.1650-1658 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3 |
container_end_page | 1658 |
container_issue | 7 |
container_start_page | 1650 |
container_title | Ecology (Durham) |
container_volume | 87 |
creator | Meehan, Timothy D. |
description | Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe. |
doi_str_mv | 10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68766150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20069123</jstor_id><sourcerecordid>20069123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</originalsourceid><addsrcrecordid>eNqdkV-L1DAUxYMo7uzqR1CLsKIPHe9N2_xREIZhVhcWFtR5EJGQSdMlQ9usSYvMtze1wy74IhgIeTi_nNycQ8gSYYlCwlsApLlklXhNAdgbwb8jq-CdHbXW7gddwtL49_QBWaAsZC6Rw0OyuLt0Qk5j3ENaWIrH5ASZpLRAtiAfNr0NN4dsjDbTfZ2263Sb6d3Y17o3NnN91rphsOGPHL1rM-O7buzd4Gx8Qh41uo326fE8I9uLzdf1p_zq-uPlenWVGyYAclqB3aGmKC2nAqTg0mhNixIqUxey0ogSpaQN1IUwrGp4ReuSYS3AImhbnJFXs-9t8D9HGwfVuWhs2-re-jEqJjhjWME_QZRUcgYT-PIvcO_H0KdPKJoS52XBMEEXM2SCjzHYRt2GlE84KAQ19aKmiNUUsZp6UYKrqRe12a5Wq0tFFaj1taLJ6PnxtXHX2fre5lhEAs6PgI5Gt01I4bt4z3EpBQJP3OeZ--Vae_jPcdRm_W3SBeeTnEyfzab7OPhwZzohEmmR9Bez3miv9E1Ig22_UMACEGlZpTR_A6eWwJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218974361</pqid></control><display><type>article</type><title>Energy use and animal abundance in litter and soil communities</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Meehan, Timothy D.</creator><creatorcontrib>Meehan, Timothy D.</creatorcontrib><description>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2</identifier><identifier>PMID: 16922316</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>abundance ; ambient temperature ; Animal and plant ecology ; Animal physiology ; Animal, plant and microbial ecology ; Animals ; arthropods ; Biological and medical sciences ; body mass ; Body size ; Body temperature ; body weight ; carbon ; Energy Metabolism ; Food Chain ; Food chains ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; International Biological Programme ; Invertebrates ; Invertebrates - physiology ; Marine ecology ; mathematical models ; metabolic scaling theory ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Modeling ; Models, Biological ; Net primary production ; plant litter ; Population Dynamics ; Population ecology ; population size ; prediction ; primary productivity ; Soil ; soil arthropods ; Soil ecology ; Soil invertebrates ; Synecology ; Temperature ; Terrestrial ecosystems ; Theory ; Trees - physiology ; trophic level ; Trophic levels ; trophic relationships</subject><ispartof>Ecology (Durham), 2006-07, Vol.87 (7), p.1650-1658</ispartof><rights>Copyright 2006 Ecological Society of America</rights><rights>2006 by the Ecological Society of America</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Ecological Society of America Jul 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</citedby><cites>FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20069123$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20069123$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17998107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16922316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meehan, Timothy D.</creatorcontrib><title>Energy use and animal abundance in litter and soil communities</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</description><subject>abundance</subject><subject>ambient temperature</subject><subject>Animal and plant ecology</subject><subject>Animal physiology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>arthropods</subject><subject>Biological and medical sciences</subject><subject>body mass</subject><subject>Body size</subject><subject>Body temperature</subject><subject>body weight</subject><subject>carbon</subject><subject>Energy Metabolism</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>International Biological Programme</subject><subject>Invertebrates</subject><subject>Invertebrates - physiology</subject><subject>Marine ecology</subject><subject>mathematical models</subject><subject>metabolic scaling theory</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Net primary production</subject><subject>plant litter</subject><subject>Population Dynamics</subject><subject>Population ecology</subject><subject>population size</subject><subject>prediction</subject><subject>primary productivity</subject><subject>Soil</subject><subject>soil arthropods</subject><subject>Soil ecology</subject><subject>Soil invertebrates</subject><subject>Synecology</subject><subject>Temperature</subject><subject>Terrestrial ecosystems</subject><subject>Theory</subject><subject>Trees - physiology</subject><subject>trophic level</subject><subject>Trophic levels</subject><subject>trophic relationships</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqdkV-L1DAUxYMo7uzqR1CLsKIPHe9N2_xREIZhVhcWFtR5EJGQSdMlQ9usSYvMtze1wy74IhgIeTi_nNycQ8gSYYlCwlsApLlklXhNAdgbwb8jq-CdHbXW7gddwtL49_QBWaAsZC6Rw0OyuLt0Qk5j3ENaWIrH5ASZpLRAtiAfNr0NN4dsjDbTfZ2263Sb6d3Y17o3NnN91rphsOGPHL1rM-O7buzd4Gx8Qh41uo326fE8I9uLzdf1p_zq-uPlenWVGyYAclqB3aGmKC2nAqTg0mhNixIqUxey0ogSpaQN1IUwrGp4ReuSYS3AImhbnJFXs-9t8D9HGwfVuWhs2-re-jEqJjhjWME_QZRUcgYT-PIvcO_H0KdPKJoS52XBMEEXM2SCjzHYRt2GlE84KAQ19aKmiNUUsZp6UYKrqRe12a5Wq0tFFaj1taLJ6PnxtXHX2fre5lhEAs6PgI5Gt01I4bt4z3EpBQJP3OeZ--Vae_jPcdRm_W3SBeeTnEyfzab7OPhwZzohEmmR9Bez3miv9E1Ig22_UMACEGlZpTR_A6eWwJ8</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Meehan, Timothy D.</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>Energy use and animal abundance in litter and soil communities</title><author>Meehan, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>abundance</topic><topic>ambient temperature</topic><topic>Animal and plant ecology</topic><topic>Animal physiology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>arthropods</topic><topic>Biological and medical sciences</topic><topic>body mass</topic><topic>Body size</topic><topic>Body temperature</topic><topic>body weight</topic><topic>carbon</topic><topic>Energy Metabolism</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>International Biological Programme</topic><topic>Invertebrates</topic><topic>Invertebrates - physiology</topic><topic>Marine ecology</topic><topic>mathematical models</topic><topic>metabolic scaling theory</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Net primary production</topic><topic>plant litter</topic><topic>Population Dynamics</topic><topic>Population ecology</topic><topic>population size</topic><topic>prediction</topic><topic>primary productivity</topic><topic>Soil</topic><topic>soil arthropods</topic><topic>Soil ecology</topic><topic>Soil invertebrates</topic><topic>Synecology</topic><topic>Temperature</topic><topic>Terrestrial ecosystems</topic><topic>Theory</topic><topic>Trees - physiology</topic><topic>trophic level</topic><topic>Trophic levels</topic><topic>trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meehan, Timothy D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meehan, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy use and animal abundance in litter and soil communities</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2006-07</date><risdate>2006</risdate><volume>87</volume><issue>7</issue><spage>1650</spage><epage>1658</epage><pages>1650-1658</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Tools from metabolic scaling and food web theory were used to construct a general model of carbon flux by litter and soil invertebrates. The flux model was used to explore the energetic basis of invertebrate abundance and predicted that abundance should (1) scale linearly with net primary production; (2) be related to the body mass of animals as a power function, with an exponent between -0.65 and -0.85; (3) be related to the average body temperature of animals according to the Boltzmann factor, with an activation energy between 0.27 and 0.79 eV; and (4) decrease by a factor of 0.05 to 0.15 across trophic levels due to gross production efficiency of prey. Model predictions were generally supported by a global data set on invertebrate abundance that was amassed during the International Biological Programme, indicating that fundamental energetic principles explain a large degree of variation in invertebrate abundance across the globe.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>16922316</pmid><doi>10.1890/0012-9658(2006)87[1650:euaaai]2.0.co;2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2006-07, Vol.87 (7), p.1650-1658 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_68766150 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | abundance ambient temperature Animal and plant ecology Animal physiology Animal, plant and microbial ecology Animals arthropods Biological and medical sciences body mass Body size Body temperature body weight carbon Energy Metabolism Food Chain Food chains Fundamental and applied biological sciences. Psychology General aspects. Techniques International Biological Programme Invertebrates Invertebrates - physiology Marine ecology mathematical models metabolic scaling theory Methods and techniques (sampling, tagging, trapping, modelling...) Modeling Models, Biological Net primary production plant litter Population Dynamics Population ecology population size prediction primary productivity Soil soil arthropods Soil ecology Soil invertebrates Synecology Temperature Terrestrial ecosystems Theory Trees - physiology trophic level Trophic levels trophic relationships |
title | Energy use and animal abundance in litter and soil communities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20use%20and%20animal%20abundance%20in%20litter%20and%20soil%20communities&rft.jtitle=Ecology%20(Durham)&rft.au=Meehan,%20Timothy%20D.&rft.date=2006-07&rft.volume=87&rft.issue=7&rft.spage=1650&rft.epage=1658&rft.pages=1650-1658&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/0012-9658(2006)87%5B1650:euaaai%5D2.0.co;2&rft_dat=%3Cjstor_proqu%3E20069123%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6800-250eb1a219e72809879caa23405cd395a1191992f0d38c65f752d461d80e10ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218974361&rft_id=info:pmid/16922316&rft_jstor_id=20069123&rfr_iscdi=true |