Loading…
The adaptive filter of the yeast galactose pathway
In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the...
Saved in:
Published in: | Journal of theoretical biology 2006-09, Vol.242 (2), p.372-381 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913 |
container_end_page | 381 |
container_issue | 2 |
container_start_page | 372 |
container_title | Journal of theoretical biology |
container_volume | 242 |
creator | Smidtas, Serge Schächter, Vincent Képès, François |
description | In the yeast
Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces
GAL3 and
GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that
GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response. |
doi_str_mv | 10.1016/j.jtbi.2006.03.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68769928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519306001111</els_id><sourcerecordid>19341413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EgvL4AwwoE1vCvbbjxBILQrykSiwwW058TV2lTYldUP89qVqJDaYrXZ3vDIexS4QCAdXNvJinJhQcQBUgCoDygE0QdJnXpcRDNgHgPC9RixN2GuMcALQU6pidoFJS6FJOGH-bUWadXaXwRZkPXaIh632WxveGbEzZh-1sm_pI2cqm2bfdnLMjb7tIF_t7xt4fH97un_Pp69PL_d00byXXKa_JNr4qobXOW1GBcg1vUFlBIKTWtaicF8567lxZKXBcom4sokCPvNEoztj1zrsa-s81xWQWIbbUdXZJ_ToaVVdKa17_C44BJEoUI8h3YDv0MQ7kzWoICztsDILZJjVzs01qtkkNCDMmHUdXe_u6WZD7newbjsDtDqAxxlegwcQ20LIlFwZqk3F9-Mv_AxVlhow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19341413</pqid></control><display><type>article</type><title>The adaptive filter of the yeast galactose pathway</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Smidtas, Serge ; Schächter, Vincent ; Képès, François</creator><creatorcontrib>Smidtas, Serge ; Schächter, Vincent ; Képès, François</creatorcontrib><description>In the yeast
Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces
GAL3 and
GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that
GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2006.03.005</identifier><identifier>PMID: 16643954</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptive filter ; Feedback loop ; Feedback, Physiological - physiology ; Galactose - genetics ; Galactose - metabolism ; Galactose switch ; Gene Expression Regulation, Enzymologic ; Interaction networks ; Models, Biological ; Qualitative modeling ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Yeast</subject><ispartof>Journal of theoretical biology, 2006-09, Vol.242 (2), p.372-381</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</citedby><cites>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16643954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smidtas, Serge</creatorcontrib><creatorcontrib>Schächter, Vincent</creatorcontrib><creatorcontrib>Képès, François</creatorcontrib><title>The adaptive filter of the yeast galactose pathway</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In the yeast
Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces
GAL3 and
GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that
GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</description><subject>Adaptive filter</subject><subject>Feedback loop</subject><subject>Feedback, Physiological - physiology</subject><subject>Galactose - genetics</subject><subject>Galactose - metabolism</subject><subject>Galactose switch</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Interaction networks</subject><subject>Models, Biological</subject><subject>Qualitative modeling</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Yeast</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EgvL4AwwoE1vCvbbjxBILQrykSiwwW058TV2lTYldUP89qVqJDaYrXZ3vDIexS4QCAdXNvJinJhQcQBUgCoDygE0QdJnXpcRDNgHgPC9RixN2GuMcALQU6pidoFJS6FJOGH-bUWadXaXwRZkPXaIh632WxveGbEzZh-1sm_pI2cqm2bfdnLMjb7tIF_t7xt4fH97un_Pp69PL_d00byXXKa_JNr4qobXOW1GBcg1vUFlBIKTWtaicF8567lxZKXBcom4sokCPvNEoztj1zrsa-s81xWQWIbbUdXZJ_ToaVVdKa17_C44BJEoUI8h3YDv0MQ7kzWoICztsDILZJjVzs01qtkkNCDMmHUdXe_u6WZD7newbjsDtDqAxxlegwcQ20LIlFwZqk3F9-Mv_AxVlhow</recordid><startdate>20060921</startdate><enddate>20060921</enddate><creator>Smidtas, Serge</creator><creator>Schächter, Vincent</creator><creator>Képès, François</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20060921</creationdate><title>The adaptive filter of the yeast galactose pathway</title><author>Smidtas, Serge ; Schächter, Vincent ; Képès, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive filter</topic><topic>Feedback loop</topic><topic>Feedback, Physiological - physiology</topic><topic>Galactose - genetics</topic><topic>Galactose - metabolism</topic><topic>Galactose switch</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Interaction networks</topic><topic>Models, Biological</topic><topic>Qualitative modeling</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smidtas, Serge</creatorcontrib><creatorcontrib>Schächter, Vincent</creatorcontrib><creatorcontrib>Képès, François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smidtas, Serge</au><au>Schächter, Vincent</au><au>Képès, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The adaptive filter of the yeast galactose pathway</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2006-09-21</date><risdate>2006</risdate><volume>242</volume><issue>2</issue><spage>372</spage><epage>381</epage><pages>372-381</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In the yeast
Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces
GAL3 and
GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that
GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16643954</pmid><doi>10.1016/j.jtbi.2006.03.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2006-09, Vol.242 (2), p.372-381 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_68769928 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adaptive filter Feedback loop Feedback, Physiological - physiology Galactose - genetics Galactose - metabolism Galactose switch Gene Expression Regulation, Enzymologic Interaction networks Models, Biological Qualitative modeling Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction - physiology Yeast |
title | The adaptive filter of the yeast galactose pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20adaptive%20filter%20of%20the%20yeast%20galactose%20pathway&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Smidtas,%20Serge&rft.date=2006-09-21&rft.volume=242&rft.issue=2&rft.spage=372&rft.epage=381&rft.pages=372-381&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2006.03.005&rft_dat=%3Cproquest_cross%3E19341413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19341413&rft_id=info:pmid/16643954&rfr_iscdi=true |