Loading…

The adaptive filter of the yeast galactose pathway

In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2006-09, Vol.242 (2), p.372-381
Main Authors: Smidtas, Serge, Schächter, Vincent, Képès, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913
cites cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913
container_end_page 381
container_issue 2
container_start_page 372
container_title Journal of theoretical biology
container_volume 242
creator Smidtas, Serge
Schächter, Vincent
Képès, François
description In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces GAL3 and GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.
doi_str_mv 10.1016/j.jtbi.2006.03.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68769928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519306001111</els_id><sourcerecordid>19341413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EgvL4AwwoE1vCvbbjxBILQrykSiwwW058TV2lTYldUP89qVqJDaYrXZ3vDIexS4QCAdXNvJinJhQcQBUgCoDygE0QdJnXpcRDNgHgPC9RixN2GuMcALQU6pidoFJS6FJOGH-bUWadXaXwRZkPXaIh632WxveGbEzZh-1sm_pI2cqm2bfdnLMjb7tIF_t7xt4fH97un_Pp69PL_d00byXXKa_JNr4qobXOW1GBcg1vUFlBIKTWtaicF8567lxZKXBcom4sokCPvNEoztj1zrsa-s81xWQWIbbUdXZJ_ToaVVdKa17_C44BJEoUI8h3YDv0MQ7kzWoICztsDILZJjVzs01qtkkNCDMmHUdXe_u6WZD7newbjsDtDqAxxlegwcQ20LIlFwZqk3F9-Mv_AxVlhow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19341413</pqid></control><display><type>article</type><title>The adaptive filter of the yeast galactose pathway</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Smidtas, Serge ; Schächter, Vincent ; Képès, François</creator><creatorcontrib>Smidtas, Serge ; Schächter, Vincent ; Képès, François</creatorcontrib><description>In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces GAL3 and GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2006.03.005</identifier><identifier>PMID: 16643954</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptive filter ; Feedback loop ; Feedback, Physiological - physiology ; Galactose - genetics ; Galactose - metabolism ; Galactose switch ; Gene Expression Regulation, Enzymologic ; Interaction networks ; Models, Biological ; Qualitative modeling ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Yeast</subject><ispartof>Journal of theoretical biology, 2006-09, Vol.242 (2), p.372-381</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</citedby><cites>FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16643954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smidtas, Serge</creatorcontrib><creatorcontrib>Schächter, Vincent</creatorcontrib><creatorcontrib>Képès, François</creatorcontrib><title>The adaptive filter of the yeast galactose pathway</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces GAL3 and GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</description><subject>Adaptive filter</subject><subject>Feedback loop</subject><subject>Feedback, Physiological - physiology</subject><subject>Galactose - genetics</subject><subject>Galactose - metabolism</subject><subject>Galactose switch</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Interaction networks</subject><subject>Models, Biological</subject><subject>Qualitative modeling</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Yeast</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EgvL4AwwoE1vCvbbjxBILQrykSiwwW058TV2lTYldUP89qVqJDaYrXZ3vDIexS4QCAdXNvJinJhQcQBUgCoDygE0QdJnXpcRDNgHgPC9RixN2GuMcALQU6pidoFJS6FJOGH-bUWadXaXwRZkPXaIh632WxveGbEzZh-1sm_pI2cqm2bfdnLMjb7tIF_t7xt4fH97un_Pp69PL_d00byXXKa_JNr4qobXOW1GBcg1vUFlBIKTWtaicF8567lxZKXBcom4sokCPvNEoztj1zrsa-s81xWQWIbbUdXZJ_ToaVVdKa17_C44BJEoUI8h3YDv0MQ7kzWoICztsDILZJjVzs01qtkkNCDMmHUdXe_u6WZD7newbjsDtDqAxxlegwcQ20LIlFwZqk3F9-Mv_AxVlhow</recordid><startdate>20060921</startdate><enddate>20060921</enddate><creator>Smidtas, Serge</creator><creator>Schächter, Vincent</creator><creator>Képès, François</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20060921</creationdate><title>The adaptive filter of the yeast galactose pathway</title><author>Smidtas, Serge ; Schächter, Vincent ; Képès, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive filter</topic><topic>Feedback loop</topic><topic>Feedback, Physiological - physiology</topic><topic>Galactose - genetics</topic><topic>Galactose - metabolism</topic><topic>Galactose switch</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Interaction networks</topic><topic>Models, Biological</topic><topic>Qualitative modeling</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smidtas, Serge</creatorcontrib><creatorcontrib>Schächter, Vincent</creatorcontrib><creatorcontrib>Képès, François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smidtas, Serge</au><au>Schächter, Vincent</au><au>Képès, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The adaptive filter of the yeast galactose pathway</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2006-09-21</date><risdate>2006</risdate><volume>242</volume><issue>2</issue><spage>372</spage><epage>381</epage><pages>372-381</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces GAL3 and GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16643954</pmid><doi>10.1016/j.jtbi.2006.03.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2006-09, Vol.242 (2), p.372-381
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_68769928
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptive filter
Feedback loop
Feedback, Physiological - physiology
Galactose - genetics
Galactose - metabolism
Galactose switch
Gene Expression Regulation, Enzymologic
Interaction networks
Models, Biological
Qualitative modeling
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - physiology
Yeast
title The adaptive filter of the yeast galactose pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20adaptive%20filter%20of%20the%20yeast%20galactose%20pathway&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Smidtas,%20Serge&rft.date=2006-09-21&rft.volume=242&rft.issue=2&rft.spage=372&rft.epage=381&rft.pages=372-381&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2006.03.005&rft_dat=%3Cproquest_cross%3E19341413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-8eabf750cadfa3706db2b16a3e03499837df3daf2dd5760d2419ba1131f12b913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19341413&rft_id=info:pmid/16643954&rfr_iscdi=true