Loading…

Analysis of temperature rise for piezoelectric transformer using finite-element method

Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457
Main Authors: JOO, Hyun-Woo, LEE, Chang-Hwan, RHO, Jong-Seok, JUNG, Hyun-Kyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3
cites cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3
container_end_page 1457
container_issue 8
container_start_page 1449
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 53
creator JOO, Hyun-Woo
LEE, Chang-Hwan
RHO, Jong-Seok
JUNG, Hyun-Kyo
description Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.
doi_str_mv 10.1109/TUFFC.2006.1665102
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_68773595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1665102</ieee_id><sourcerecordid>2343865981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuAgir2t_QMKEoTqaq4nmcnXslx6VSi4ad0OmcyJpszHNcks6q9v2jtQceEqEJ7z5uMl5C2DLWNgPt_c7ve7LQeQWyalYMBfkA0TXFTaCPGSbEBrUdXA4IScpnQHwJrG8NfkhEnDmTZqQ35cTna4TyHR2dOM4wGjzUtEGkNC6udIDwH_zDigyzE4mqOdUtkeMdIlhekn9WEKGasiRpwyHTH_mvs35JW3Q8LzdT0jt_urm93X6vr7l2-7y-vKlWvmCr12zvWd9KY3rjHYQ90w3wvtywuUV8J3vjPMcLB9bwRX0DG0tQQDwEVXn5FPx9xDnH8vmHI7huRwGOyE85JabSQHyY0u8uN_pdRK1cKIAj_8A-_mJZZfKmlSaMlqxQviR-TinFJE3x5iGG28bxm0j-W0T-W0j-W0azll6P2avHQj9s8jaxsFXKzAJmcHX_7ahfTslFGq0XVx744uIOJfMcdjHgBoQ6ES</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865861372</pqid></control><display><type>article</type><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><source>IEEE Xplore (Online service)</source><creator>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</creator><creatorcontrib>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</creatorcontrib><description>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2006.1665102</identifier><identifier>PMID: 16921897</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Constants ; Electric potential ; Exact sciences and technology ; Finite element method ; Finite element methods ; Fundamental areas of phenomenology (including applications) ; Gain ; General equipment and techniques ; Heat transfer ; Impedance ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Physics ; Piezoelectricity ; Resonance ; Resonant frequency ; Steady-state ; Temperature distribution ; Temperature measurement ; Transducers ; Transformers ; Ultrasonics, quantum acoustics, and physical effects of sound ; Voltage transformers</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</citedby><cites>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1665102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17977483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16921897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JOO, Hyun-Woo</creatorcontrib><creatorcontrib>LEE, Chang-Hwan</creatorcontrib><creatorcontrib>RHO, Jong-Seok</creatorcontrib><creatorcontrib>JUNG, Hyun-Kyo</creatorcontrib><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</description><subject>Acoustics</subject><subject>Constants</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain</subject><subject>General equipment and techniques</subject><subject>Heat transfer</subject><subject>Impedance</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Steady-state</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Transducers</subject><subject>Transformers</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Voltage transformers</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuAgir2t_QMKEoTqaq4nmcnXslx6VSi4ad0OmcyJpszHNcks6q9v2jtQceEqEJ7z5uMl5C2DLWNgPt_c7ve7LQeQWyalYMBfkA0TXFTaCPGSbEBrUdXA4IScpnQHwJrG8NfkhEnDmTZqQ35cTna4TyHR2dOM4wGjzUtEGkNC6udIDwH_zDigyzE4mqOdUtkeMdIlhekn9WEKGasiRpwyHTH_mvs35JW3Q8LzdT0jt_urm93X6vr7l2-7y-vKlWvmCr12zvWd9KY3rjHYQ90w3wvtywuUV8J3vjPMcLB9bwRX0DG0tQQDwEVXn5FPx9xDnH8vmHI7huRwGOyE85JabSQHyY0u8uN_pdRK1cKIAj_8A-_mJZZfKmlSaMlqxQviR-TinFJE3x5iGG28bxm0j-W0T-W0j-W0azll6P2avHQj9s8jaxsFXKzAJmcHX_7ahfTslFGq0XVx744uIOJfMcdjHgBoQ6ES</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>JOO, Hyun-Woo</creator><creator>LEE, Chang-Hwan</creator><creator>RHO, Jong-Seok</creator><creator>JUNG, Hyun-Kyo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><author>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Constants</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain</topic><topic>General equipment and techniques</topic><topic>Heat transfer</topic><topic>Impedance</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Steady-state</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Transducers</topic><topic>Transformers</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Voltage transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JOO, Hyun-Woo</creatorcontrib><creatorcontrib>LEE, Chang-Hwan</creatorcontrib><creatorcontrib>RHO, Jong-Seok</creatorcontrib><creatorcontrib>JUNG, Hyun-Kyo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JOO, Hyun-Woo</au><au>LEE, Chang-Hwan</au><au>RHO, Jong-Seok</au><au>JUNG, Hyun-Kyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of temperature rise for piezoelectric transformer using finite-element method</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>53</volume><issue>8</issue><spage>1449</spage><epage>1457</epage><pages>1449-1457</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16921897</pmid><doi>10.1109/TUFFC.2006.1665102</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_68773595
source IEEE Xplore (Online service)
subjects Acoustics
Constants
Electric potential
Exact sciences and technology
Finite element method
Finite element methods
Fundamental areas of phenomenology (including applications)
Gain
General equipment and techniques
Heat transfer
Impedance
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical analysis
Physics
Piezoelectricity
Resonance
Resonant frequency
Steady-state
Temperature distribution
Temperature measurement
Transducers
Transformers
Ultrasonics, quantum acoustics, and physical effects of sound
Voltage transformers
title Analysis of temperature rise for piezoelectric transformer using finite-element method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20temperature%20rise%20for%20piezoelectric%20transformer%20using%20finite-element%20method&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=JOO,%20Hyun-Woo&rft.date=2006-08-01&rft.volume=53&rft.issue=8&rft.spage=1449&rft.epage=1457&rft.pages=1449-1457&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2006.1665102&rft_dat=%3Cproquest_ieee_%3E2343865981%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865861372&rft_id=info:pmid/16921897&rft_ieee_id=1665102&rfr_iscdi=true