Loading…
Analysis of temperature rise for piezoelectric transformer using finite-element method
Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric p...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3 |
container_end_page | 1457 |
container_issue | 8 |
container_start_page | 1449 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 53 |
creator | JOO, Hyun-Woo LEE, Chang-Hwan RHO, Jong-Seok JUNG, Hyun-Kyo |
description | Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results. |
doi_str_mv | 10.1109/TUFFC.2006.1665102 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_68773595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1665102</ieee_id><sourcerecordid>2343865981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuAgir2t_QMKEoTqaq4nmcnXslx6VSi4ad0OmcyJpszHNcks6q9v2jtQceEqEJ7z5uMl5C2DLWNgPt_c7ve7LQeQWyalYMBfkA0TXFTaCPGSbEBrUdXA4IScpnQHwJrG8NfkhEnDmTZqQ35cTna4TyHR2dOM4wGjzUtEGkNC6udIDwH_zDigyzE4mqOdUtkeMdIlhekn9WEKGasiRpwyHTH_mvs35JW3Q8LzdT0jt_urm93X6vr7l2-7y-vKlWvmCr12zvWd9KY3rjHYQ90w3wvtywuUV8J3vjPMcLB9bwRX0DG0tQQDwEVXn5FPx9xDnH8vmHI7huRwGOyE85JabSQHyY0u8uN_pdRK1cKIAj_8A-_mJZZfKmlSaMlqxQviR-TinFJE3x5iGG28bxm0j-W0T-W0j-W0azll6P2avHQj9s8jaxsFXKzAJmcHX_7ahfTslFGq0XVx744uIOJfMcdjHgBoQ6ES</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865861372</pqid></control><display><type>article</type><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><source>IEEE Xplore (Online service)</source><creator>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</creator><creatorcontrib>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</creatorcontrib><description>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2006.1665102</identifier><identifier>PMID: 16921897</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Constants ; Electric potential ; Exact sciences and technology ; Finite element method ; Finite element methods ; Fundamental areas of phenomenology (including applications) ; Gain ; General equipment and techniques ; Heat transfer ; Impedance ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Physics ; Piezoelectricity ; Resonance ; Resonant frequency ; Steady-state ; Temperature distribution ; Temperature measurement ; Transducers ; Transformers ; Ultrasonics, quantum acoustics, and physical effects of sound ; Voltage transformers</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</citedby><cites>FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1665102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17977483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16921897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JOO, Hyun-Woo</creatorcontrib><creatorcontrib>LEE, Chang-Hwan</creatorcontrib><creatorcontrib>RHO, Jong-Seok</creatorcontrib><creatorcontrib>JUNG, Hyun-Kyo</creatorcontrib><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</description><subject>Acoustics</subject><subject>Constants</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain</subject><subject>General equipment and techniques</subject><subject>Heat transfer</subject><subject>Impedance</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Steady-state</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Transducers</subject><subject>Transformers</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Voltage transformers</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuAgir2t_QMKEoTqaq4nmcnXslx6VSi4ad0OmcyJpszHNcks6q9v2jtQceEqEJ7z5uMl5C2DLWNgPt_c7ve7LQeQWyalYMBfkA0TXFTaCPGSbEBrUdXA4IScpnQHwJrG8NfkhEnDmTZqQ35cTna4TyHR2dOM4wGjzUtEGkNC6udIDwH_zDigyzE4mqOdUtkeMdIlhekn9WEKGasiRpwyHTH_mvs35JW3Q8LzdT0jt_urm93X6vr7l2-7y-vKlWvmCr12zvWd9KY3rjHYQ90w3wvtywuUV8J3vjPMcLB9bwRX0DG0tQQDwEVXn5FPx9xDnH8vmHI7huRwGOyE85JabSQHyY0u8uN_pdRK1cKIAj_8A-_mJZZfKmlSaMlqxQviR-TinFJE3x5iGG28bxm0j-W0T-W0j-W0azll6P2avHQj9s8jaxsFXKzAJmcHX_7ahfTslFGq0XVx744uIOJfMcdjHgBoQ6ES</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>JOO, Hyun-Woo</creator><creator>LEE, Chang-Hwan</creator><creator>RHO, Jong-Seok</creator><creator>JUNG, Hyun-Kyo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Analysis of temperature rise for piezoelectric transformer using finite-element method</title><author>JOO, Hyun-Woo ; LEE, Chang-Hwan ; RHO, Jong-Seok ; JUNG, Hyun-Kyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Constants</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain</topic><topic>General equipment and techniques</topic><topic>Heat transfer</topic><topic>Impedance</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Steady-state</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Transducers</topic><topic>Transformers</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Voltage transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JOO, Hyun-Woo</creatorcontrib><creatorcontrib>LEE, Chang-Hwan</creatorcontrib><creatorcontrib>RHO, Jong-Seok</creatorcontrib><creatorcontrib>JUNG, Hyun-Kyo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JOO, Hyun-Woo</au><au>LEE, Chang-Hwan</au><au>RHO, Jong-Seok</au><au>JUNG, Hyun-Kyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of temperature rise for piezoelectric transformer using finite-element method</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>53</volume><issue>8</issue><spage>1449</spage><epage>1457</epage><pages>1449-1457</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16921897</pmid><doi>10.1109/TUFFC.2006.1665102</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006-08, Vol.53 (8), p.1449-1457 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_68773595 |
source | IEEE Xplore (Online service) |
subjects | Acoustics Constants Electric potential Exact sciences and technology Finite element method Finite element methods Fundamental areas of phenomenology (including applications) Gain General equipment and techniques Heat transfer Impedance Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mathematical analysis Physics Piezoelectricity Resonance Resonant frequency Steady-state Temperature distribution Temperature measurement Transducers Transformers Ultrasonics, quantum acoustics, and physical effects of sound Voltage transformers |
title | Analysis of temperature rise for piezoelectric transformer using finite-element method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20temperature%20rise%20for%20piezoelectric%20transformer%20using%20finite-element%20method&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=JOO,%20Hyun-Woo&rft.date=2006-08-01&rft.volume=53&rft.issue=8&rft.spage=1449&rft.epage=1457&rft.pages=1449-1457&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2006.1665102&rft_dat=%3Cproquest_ieee_%3E2343865981%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-ef8cccdb6f9d9c49ed0341fd58f9557f75fbfb91920add95270b1ea36090025b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865861372&rft_id=info:pmid/16921897&rft_ieee_id=1665102&rfr_iscdi=true |