Loading…
Crystal structure of the apo‐PerR‐Zn protein from Bacillus subtilis
Summary Bacteria adapt to elevated levels of Reactive Oxygen Species (ROS) by increasing the expression of defence and repair proteins, which is regulated by ROS responsive transcription factors. In Bacillus subtilis the zinc protein PerR, a peroxide sensor that binds DNA in the presence of a regula...
Saved in:
Published in: | Molecular microbiology 2006-09, Vol.61 (5), p.1211-1219 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Bacteria adapt to elevated levels of Reactive Oxygen Species (ROS) by increasing the expression of defence and repair proteins, which is regulated by ROS responsive transcription factors. In Bacillus subtilis the zinc protein PerR, a peroxide sensor that binds DNA in the presence of a regulatory metal Mn2+ or Fe2+, mediates the adaptive response to H2O2. This study presents the first crystal structure of apo‐PerR‐Zn which shows that all four cysteine residues of the protein are involved in zinc co‐ordination. The Zn(Cys)4 site locks the dimerization domain and stabilizes the dimer. Sequence alignment of PerR‐like proteins supports that this structural site may constitute a distinctive feature of this class of peroxide stress regulators. |
---|---|
ISSN: | 0950-382X 1365-2958 |
DOI: | 10.1111/j.1365-2958.2006.05313.x |