Loading…

Characterization of the human patatin-like phospholipase family

Several publications have described biological roles for human patatin-like phospholipases (PNPLAs) in the regulation of adipocyte differentiation. Here, we report on the characterization and expression profiling of 10 human PNPLAs. A variety of bioinformatics approaches were used to identify and ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2006-09, Vol.47 (9), p.1940-1949
Main Authors: Wilson, Paul A, Gardner, Scott D, Lambie, Natalie M, Commans, Stephane A, Crowther, Daniel J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several publications have described biological roles for human patatin-like phospholipases (PNPLAs) in the regulation of adipocyte differentiation. Here, we report on the characterization and expression profiling of 10 human PNPLAs. A variety of bioinformatics approaches were used to identify and characterize all PNPLAs encoded by the human genome. The genes described represent a divergent family, most with a highly conserved ortholog in several mammalian species. In silico characterization predicts that two of the genes function as integral membrane proteins and are regulated by cAMP/cGMP. A structurally guided protein alignment of the patatin-like domain identifies a number of conserved residues in all family members. Quantitative PCR was used to determine the expression profile of each family member. Affymetrix-based profiling of a human preadipocyte cell line identified several members that are differentially regulated during cell differentiation. Cumulative data suggest that patatin-like genes normally expressed at very low levels are induced in response to environmental signals. Given the observed conservation of the patatin fold and lipase motif in all human PNPLAs, a single nomenclature to describe the PNPLA family is proposed.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.m600185-jlr200