Loading…

AtIREG2 Encodes a Tonoplast Transport Protein Involved in Iron-dependent Nickel Detoxification in Arabidopsis thaliana Roots

Iron acquisition in Arabidopsis depends mainly on AtIRT1, a Fe2+ transporter in the plasma membrane of root cells. However, substrate specificity of AtIRT1 is low, leading to an excess accumulation of other transition metals in iron-deficient plants. In the present study we describe AtIREG2 as a nic...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-09, Vol.281 (35), p.25532-25540
Main Authors: Schaaf, Gabriel, Honsbein, Annegret, Meda, Anderson R., Kirchner, Silvia, Wipf, Daniel, von Wirén, Nicolaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron acquisition in Arabidopsis depends mainly on AtIRT1, a Fe2+ transporter in the plasma membrane of root cells. However, substrate specificity of AtIRT1 is low, leading to an excess accumulation of other transition metals in iron-deficient plants. In the present study we describe AtIREG2 as a nickel transporter at the vacuolar membrane that counterbalances the low substrate specificity of AtIRT1 and possibly other iron transport systems in iron-deficient root cells. AtIREG2 is co-regulated with AtIRT1 by the transcription factor FRU/FIT1, encodes a membrane protein, which has 10 putative transmembrane domains and shares homology with vertebrate Fe2+ exporters. Heterologous expression of AtIREG2 in various yeast mutants, however, did not demonstrate an iron transport function. Instead, expression in wild-type and nickel-sensitive cot1 yeast cells conferred enhanced tolerance to elevated concentrations of nickel at acidic pH. A role in vacuolar substrate transport was further supported by localization of AtIREG2-GFP fusion proteins to the tonoplast in Arabidopsis suspension cells and root cells of intact plants. Transgenic plants overexpressing AtIREG2 showed an increased tolerance to elevated concentrations of nickel, whereas T-DNA insertion lines lacking AtIREG2 expression were more sensitive to nickel, particularly under iron deficiency, and accumulated less nickel in roots. We therefore propose a role of AtIREG2 in vacuolar loading of nickel under iron deficiency and thus identify it as a novel component in the iron deficiency stress response.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M601062200