Loading…
On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model
Accurate, yet simple and efficient, formulae are presented for calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) from the aspherical Hansen–Coppens pseudoatom model of electron density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They...
Saved in:
Published in: | Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2006-09, Vol.62 (5), p.400-408 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5528-f241a81e717ba1d2860ef8aee3a6840cbd18d60910f06b4ee68e08264accbd073 |
---|---|
cites | |
container_end_page | 408 |
container_issue | 5 |
container_start_page | 400 |
container_title | Acta crystallographica. Section A, Foundations of crystallography |
container_volume | 62 |
creator | Volkov, Anatoliy King, Harry F. Coppens, Philip Farrugia, Louis J. |
description | Accurate, yet simple and efficient, formulae are presented for calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) from the aspherical Hansen–Coppens pseudoatom model of electron density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based on the expansion of |r′−r|−1 in spherical harmonics and the incomplete gamma function for a Slater‐type function of the form Rl(r) = rn exp(−αr). The formulae are valid for 0 ≤r≤∞ and are easily extended to higher values of l. Special treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0. The method is tested using theoretical pseudoatom parameters of the formamide molecule obtained via reciprocal‐space fitting of PBE/6‐31G** densities and experimental X‐ray data of Fe(CO)5. The ESP, EF and EFG values at the nuclear positions in formamide are in very good agreement with those directly evaluated from density‐functional PBE calculations with 6‐31G**, aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The small observed discrepancies are attributed to the different behavior of Gaussian‐ and Slater‐type functions near the nuclei and to imperfections of the reciprocal‐space fit. An EF map is displayed which allows useful visualization of the lattice EF effects in the crystal structure of formamide. Analysis of experimental 100 K X‐ray data of Fe(CO)5 yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 × 10−28 m2 after taking into account Sternheimer shielding/antishielding effects of the core. This value is in excellent agreement with that reported by Su & Coppens [Acta Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted value of 0.16 ± 5% × 10−28 m2 obtained from combined theoretical/spectroscopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett.25, 3545–3548]. |
doi_str_mv | 10.1107/S0108767306026298 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68784068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1110608831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5528-f241a81e717ba1d2860ef8aee3a6840cbd18d60910f06b4ee68e08264accbd073</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCD-CCIiR6IjB2Ett7XFXQLSoUqSDEyZp1JjTFiYOdqO2VX15vN6JSOXCy9N73nscexl5weMs5qHfnwEErqQqQIKRY6kdswSVAXilRPmaLrZ1v_T22H-MlAPCCw1O2x-VSyFKrBftz1mfjBWUWnZ0cjq3vM9_cSeTIjsHHMak2G_xI_diiezMbSWtacnWGff1Q-hmwbhOeNcF3d2UYhwtKALpsiDTVHsfkdL4m94w9adBFej6fB-zbh_dfj9b56dnxydHqNLdVJXTeiJKj5qS42iCvhZZAjUaiAqUuwW5qrmsJSw4NyE1JJDWBTs9EmzxQxQE73PUOwf-eKI6ma6Ml57AnP0UjtUo9Uifw1QPw0k-hT7MZAVyBFJVIEN9BNn1RDNSYIbQdhhvDwWy3Y_7ZTsq8nIunTUf1fWJeRwJezwDG9FVNwN628Z7ToAtVFInTO-6qdXTz_5vN6sfqfF1BuZ0h30XbONL13yiGXyYFVGW-fz42JXyqymL9xXwsbgFM1rdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201706252</pqid></control><display><type>article</type><title>On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Volkov, Anatoliy ; King, Harry F. ; Coppens, Philip ; Farrugia, Louis J.</creator><creatorcontrib>Volkov, Anatoliy ; King, Harry F. ; Coppens, Philip ; Farrugia, Louis J.</creatorcontrib><description>Accurate, yet simple and efficient, formulae are presented for calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) from the aspherical Hansen–Coppens pseudoatom model of electron density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based on the expansion of |r′−r|−1 in spherical harmonics and the incomplete gamma function for a Slater‐type function of the form Rl(r) = rn exp(−αr). The formulae are valid for 0 ≤r≤∞ and are easily extended to higher values of l. Special treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0. The method is tested using theoretical pseudoatom parameters of the formamide molecule obtained via reciprocal‐space fitting of PBE/6‐31G** densities and experimental X‐ray data of Fe(CO)5. The ESP, EF and EFG values at the nuclear positions in formamide are in very good agreement with those directly evaluated from density‐functional PBE calculations with 6‐31G**, aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The small observed discrepancies are attributed to the different behavior of Gaussian‐ and Slater‐type functions near the nuclei and to imperfections of the reciprocal‐space fit. An EF map is displayed which allows useful visualization of the lattice EF effects in the crystal structure of formamide. Analysis of experimental 100 K X‐ray data of Fe(CO)5 yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 × 10−28 m2 after taking into account Sternheimer shielding/antishielding effects of the core. This value is in excellent agreement with that reported by Su & Coppens [Acta Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted value of 0.16 ± 5% × 10−28 m2 obtained from combined theoretical/spectroscopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett.25, 3545–3548].</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S0108767306026298</identifier><identifier>PMID: 16926487</identifier><identifier>CODEN: ACACEQ</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Blackwell Publishing Ltd</publisher><subject>aspherical pseudoatom model ; Condensed matter: structure, mechanical and thermal properties ; Crystalline state (including molecular motions in solids) ; Crystallography ; electric field ; electric field gradient ; Electric fields ; electrostatic potential ; Electrostatics ; Exact sciences and technology ; Physics ; Structure of solids and liquids; crystallography ; Theory of crystal structure, crystal symmetry; calculations and modeling</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2006-09, Vol.62 (5), p.400-408</ispartof><rights>2007 INIST-CNRS</rights><rights>International Union of Crystallography, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5528-f241a81e717ba1d2860ef8aee3a6840cbd18d60910f06b4ee68e08264accbd073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18083733$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16926487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkov, Anatoliy</creatorcontrib><creatorcontrib>King, Harry F.</creatorcontrib><creatorcontrib>Coppens, Philip</creatorcontrib><creatorcontrib>Farrugia, Louis J.</creatorcontrib><title>On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>Accurate, yet simple and efficient, formulae are presented for calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) from the aspherical Hansen–Coppens pseudoatom model of electron density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based on the expansion of |r′−r|−1 in spherical harmonics and the incomplete gamma function for a Slater‐type function of the form Rl(r) = rn exp(−αr). The formulae are valid for 0 ≤r≤∞ and are easily extended to higher values of l. Special treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0. The method is tested using theoretical pseudoatom parameters of the formamide molecule obtained via reciprocal‐space fitting of PBE/6‐31G** densities and experimental X‐ray data of Fe(CO)5. The ESP, EF and EFG values at the nuclear positions in formamide are in very good agreement with those directly evaluated from density‐functional PBE calculations with 6‐31G**, aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The small observed discrepancies are attributed to the different behavior of Gaussian‐ and Slater‐type functions near the nuclei and to imperfections of the reciprocal‐space fit. An EF map is displayed which allows useful visualization of the lattice EF effects in the crystal structure of formamide. Analysis of experimental 100 K X‐ray data of Fe(CO)5 yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 × 10−28 m2 after taking into account Sternheimer shielding/antishielding effects of the core. This value is in excellent agreement with that reported by Su & Coppens [Acta Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted value of 0.16 ± 5% × 10−28 m2 obtained from combined theoretical/spectroscopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett.25, 3545–3548].</description><subject>aspherical pseudoatom model</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>Crystallography</subject><subject>electric field</subject><subject>electric field gradient</subject><subject>Electric fields</subject><subject>electrostatic potential</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory of crystal structure, crystal symmetry; calculations and modeling</subject><issn>0108-7673</issn><issn>1600-5724</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EotvCD-CCIiR6IjB2Ett7XFXQLSoUqSDEyZp1JjTFiYOdqO2VX15vN6JSOXCy9N73nscexl5weMs5qHfnwEErqQqQIKRY6kdswSVAXilRPmaLrZ1v_T22H-MlAPCCw1O2x-VSyFKrBftz1mfjBWUWnZ0cjq3vM9_cSeTIjsHHMak2G_xI_diiezMbSWtacnWGff1Q-hmwbhOeNcF3d2UYhwtKALpsiDTVHsfkdL4m94w9adBFej6fB-zbh_dfj9b56dnxydHqNLdVJXTeiJKj5qS42iCvhZZAjUaiAqUuwW5qrmsJSw4NyE1JJDWBTs9EmzxQxQE73PUOwf-eKI6ma6Ml57AnP0UjtUo9Uifw1QPw0k-hT7MZAVyBFJVIEN9BNn1RDNSYIbQdhhvDwWy3Y_7ZTsq8nIunTUf1fWJeRwJezwDG9FVNwN628Z7ToAtVFInTO-6qdXTz_5vN6sfqfF1BuZ0h30XbONL13yiGXyYFVGW-fz42JXyqymL9xXwsbgFM1rdQ</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Volkov, Anatoliy</creator><creator>King, Harry F.</creator><creator>Coppens, Philip</creator><creator>Farrugia, Louis J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model</title><author>Volkov, Anatoliy ; King, Harry F. ; Coppens, Philip ; Farrugia, Louis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5528-f241a81e717ba1d2860ef8aee3a6840cbd18d60910f06b4ee68e08264accbd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>aspherical pseudoatom model</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>Crystallography</topic><topic>electric field</topic><topic>electric field gradient</topic><topic>Electric fields</topic><topic>electrostatic potential</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory of crystal structure, crystal symmetry; calculations and modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Anatoliy</creatorcontrib><creatorcontrib>King, Harry F.</creatorcontrib><creatorcontrib>Coppens, Philip</creatorcontrib><creatorcontrib>Farrugia, Louis J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Anatoliy</au><au>King, Harry F.</au><au>Coppens, Philip</au><au>Farrugia, Louis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>5</issue><spage>400</spage><epage>408</epage><pages>400-408</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><eissn>2053-2733</eissn><coden>ACACEQ</coden><abstract>Accurate, yet simple and efficient, formulae are presented for calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) from the aspherical Hansen–Coppens pseudoatom model of electron density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based on the expansion of |r′−r|−1 in spherical harmonics and the incomplete gamma function for a Slater‐type function of the form Rl(r) = rn exp(−αr). The formulae are valid for 0 ≤r≤∞ and are easily extended to higher values of l. Special treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0. The method is tested using theoretical pseudoatom parameters of the formamide molecule obtained via reciprocal‐space fitting of PBE/6‐31G** densities and experimental X‐ray data of Fe(CO)5. The ESP, EF and EFG values at the nuclear positions in formamide are in very good agreement with those directly evaluated from density‐functional PBE calculations with 6‐31G**, aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The small observed discrepancies are attributed to the different behavior of Gaussian‐ and Slater‐type functions near the nuclei and to imperfections of the reciprocal‐space fit. An EF map is displayed which allows useful visualization of the lattice EF effects in the crystal structure of formamide. Analysis of experimental 100 K X‐ray data of Fe(CO)5 yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 × 10−28 m2 after taking into account Sternheimer shielding/antishielding effects of the core. This value is in excellent agreement with that reported by Su & Coppens [Acta Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted value of 0.16 ± 5% × 10−28 m2 obtained from combined theoretical/spectroscopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett.25, 3545–3548].</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Blackwell Publishing Ltd</pub><pmid>16926487</pmid><doi>10.1107/S0108767306026298</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0108-7673 |
ispartof | Acta crystallographica. Section A, Foundations of crystallography, 2006-09, Vol.62 (5), p.400-408 |
issn | 0108-7673 1600-5724 2053-2733 |
language | eng |
recordid | cdi_proquest_miscellaneous_68784068 |
source | Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection |
subjects | aspherical pseudoatom model Condensed matter: structure, mechanical and thermal properties Crystalline state (including molecular motions in solids) Crystallography electric field electric field gradient Electric fields electrostatic potential Electrostatics Exact sciences and technology Physics Structure of solids and liquids crystallography Theory of crystal structure, crystal symmetry calculations and modeling |
title | On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20calculation%20of%20the%20electrostatic%20potential,%20electric%20field%20and%20electric%20field%20gradient%20from%20the%20aspherical%20pseudoatom%20model&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Volkov,%20Anatoliy&rft.date=2006-09&rft.volume=62&rft.issue=5&rft.spage=400&rft.epage=408&rft.pages=400-408&rft.issn=0108-7673&rft.eissn=1600-5724&rft.coden=ACACEQ&rft_id=info:doi/10.1107/S0108767306026298&rft_dat=%3Cproquest_cross%3E1110608831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5528-f241a81e717ba1d2860ef8aee3a6840cbd18d60910f06b4ee68e08264accbd073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201706252&rft_id=info:pmid/16926487&rfr_iscdi=true |