Loading…
Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes
We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle,...
Saved in:
Published in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2006-09, Vol.69 (1), p.117-125 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 125 |
container_issue | 1 |
container_start_page | 117 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 69 |
creator | Lee, Eunice S Robinson, David Rognlien, Judith L Harnett, Cindy K Simmons, Blake A Bowe Ellis, C R Davalos, Rafael V |
description | We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68786403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68786403</sourcerecordid><originalsourceid>FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53</originalsourceid><addsrcrecordid>eNo90M1KAzEUBeAsFFurryBZuRuYJJNMZinFP6i46X64k7mBSNLEZFLw7a1YXR04fJzFuSBrJlXfSDF0K3Jdykfbtpr18oqsmOq00JKvyfjmTI7WVzc7Q9GjWXJMMcPi4oFGS3Ocalkoa5vwIwM9YnHGY6E2Zhrg4FL1_zo5E71bMNNj9DVguSGXFnzB23NuyP7pcb99aXbvz6_bh12TZMcbAM4VWIFKQNfzCZnuDOKA1qCYGSpurGoZgAKt9Knq9cCkBQ4DAhopNuT-dzbl-FmxLGNwxaD3cMBYy6h0r1XXihO8O8M6BZzHlF2A_DX-PSK-AfpZXuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68786403</pqid></control><display><type>article</type><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><source>Elsevier</source><creator>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</creator><creatorcontrib>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</creatorcontrib><description>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</description><identifier>ISSN: 1567-5394</identifier><identifier>PMID: 16483852</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Electroporation - instrumentation ; Electroporation - methods ; Lipids - chemistry ; Microfluidics - instrumentation ; Microfluidics - methods ; Models, Theoretical ; Particle Size ; Time Factors</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2006-09, Vol.69 (1), p.117-125</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16483852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eunice S</creatorcontrib><creatorcontrib>Robinson, David</creatorcontrib><creatorcontrib>Rognlien, Judith L</creatorcontrib><creatorcontrib>Harnett, Cindy K</creatorcontrib><creatorcontrib>Simmons, Blake A</creatorcontrib><creatorcontrib>Bowe Ellis, C R</creatorcontrib><creatorcontrib>Davalos, Rafael V</creatorcontrib><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</description><subject>Electroporation - instrumentation</subject><subject>Electroporation - methods</subject><subject>Lipids - chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Time Factors</subject><issn>1567-5394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo90M1KAzEUBeAsFFurryBZuRuYJJNMZinFP6i46X64k7mBSNLEZFLw7a1YXR04fJzFuSBrJlXfSDF0K3Jdykfbtpr18oqsmOq00JKvyfjmTI7WVzc7Q9GjWXJMMcPi4oFGS3Ocalkoa5vwIwM9YnHGY6E2Zhrg4FL1_zo5E71bMNNj9DVguSGXFnzB23NuyP7pcb99aXbvz6_bh12TZMcbAM4VWIFKQNfzCZnuDOKA1qCYGSpurGoZgAKt9Knq9cCkBQ4DAhopNuT-dzbl-FmxLGNwxaD3cMBYy6h0r1XXihO8O8M6BZzHlF2A_DX-PSK-AfpZXuo</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Lee, Eunice S</creator><creator>Robinson, David</creator><creator>Rognlien, Judith L</creator><creator>Harnett, Cindy K</creator><creator>Simmons, Blake A</creator><creator>Bowe Ellis, C R</creator><creator>Davalos, Rafael V</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><author>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Electroporation - instrumentation</topic><topic>Electroporation - methods</topic><topic>Lipids - chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eunice S</creatorcontrib><creatorcontrib>Robinson, David</creatorcontrib><creatorcontrib>Rognlien, Judith L</creatorcontrib><creatorcontrib>Harnett, Cindy K</creatorcontrib><creatorcontrib>Simmons, Blake A</creatorcontrib><creatorcontrib>Bowe Ellis, C R</creatorcontrib><creatorcontrib>Davalos, Rafael V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eunice S</au><au>Robinson, David</au><au>Rognlien, Judith L</au><au>Harnett, Cindy K</au><au>Simmons, Blake A</au><au>Bowe Ellis, C R</au><au>Davalos, Rafael V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2006-09</date><risdate>2006</risdate><volume>69</volume><issue>1</issue><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>1567-5394</issn><abstract>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</abstract><cop>Netherlands</cop><pmid>16483852</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2006-09, Vol.69 (1), p.117-125 |
issn | 1567-5394 |
language | eng |
recordid | cdi_proquest_miscellaneous_68786403 |
source | Elsevier |
subjects | Electroporation - instrumentation Electroporation - methods Lipids - chemistry Microfluidics - instrumentation Microfluidics - methods Models, Theoretical Particle Size Time Factors |
title | Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electroporation%20of%20robust%2010-microm%20vesicles%20for%20manipulation%20of%20picoliter%20volumes&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Lee,%20Eunice%20S&rft.date=2006-09&rft.volume=69&rft.issue=1&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=1567-5394&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68786403%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68786403&rft_id=info:pmid/16483852&rfr_iscdi=true |