Loading…

Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes

We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle,...

Full description

Saved in:
Bibliographic Details
Published in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2006-09, Vol.69 (1), p.117-125
Main Authors: Lee, Eunice S, Robinson, David, Rognlien, Judith L, Harnett, Cindy K, Simmons, Blake A, Bowe Ellis, C R, Davalos, Rafael V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 125
container_issue 1
container_start_page 117
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 69
creator Lee, Eunice S
Robinson, David
Rognlien, Judith L
Harnett, Cindy K
Simmons, Blake A
Bowe Ellis, C R
Davalos, Rafael V
description We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68786403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68786403</sourcerecordid><originalsourceid>FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53</originalsourceid><addsrcrecordid>eNo90M1KAzEUBeAsFFurryBZuRuYJJNMZinFP6i46X64k7mBSNLEZFLw7a1YXR04fJzFuSBrJlXfSDF0K3Jdykfbtpr18oqsmOq00JKvyfjmTI7WVzc7Q9GjWXJMMcPi4oFGS3Ocalkoa5vwIwM9YnHGY6E2Zhrg4FL1_zo5E71bMNNj9DVguSGXFnzB23NuyP7pcb99aXbvz6_bh12TZMcbAM4VWIFKQNfzCZnuDOKA1qCYGSpurGoZgAKt9Knq9cCkBQ4DAhopNuT-dzbl-FmxLGNwxaD3cMBYy6h0r1XXihO8O8M6BZzHlF2A_DX-PSK-AfpZXuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68786403</pqid></control><display><type>article</type><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><source>Elsevier</source><creator>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</creator><creatorcontrib>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</creatorcontrib><description>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</description><identifier>ISSN: 1567-5394</identifier><identifier>PMID: 16483852</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Electroporation - instrumentation ; Electroporation - methods ; Lipids - chemistry ; Microfluidics - instrumentation ; Microfluidics - methods ; Models, Theoretical ; Particle Size ; Time Factors</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2006-09, Vol.69 (1), p.117-125</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16483852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eunice S</creatorcontrib><creatorcontrib>Robinson, David</creatorcontrib><creatorcontrib>Rognlien, Judith L</creatorcontrib><creatorcontrib>Harnett, Cindy K</creatorcontrib><creatorcontrib>Simmons, Blake A</creatorcontrib><creatorcontrib>Bowe Ellis, C R</creatorcontrib><creatorcontrib>Davalos, Rafael V</creatorcontrib><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</description><subject>Electroporation - instrumentation</subject><subject>Electroporation - methods</subject><subject>Lipids - chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Time Factors</subject><issn>1567-5394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo90M1KAzEUBeAsFFurryBZuRuYJJNMZinFP6i46X64k7mBSNLEZFLw7a1YXR04fJzFuSBrJlXfSDF0K3Jdykfbtpr18oqsmOq00JKvyfjmTI7WVzc7Q9GjWXJMMcPi4oFGS3Ocalkoa5vwIwM9YnHGY6E2Zhrg4FL1_zo5E71bMNNj9DVguSGXFnzB23NuyP7pcb99aXbvz6_bh12TZMcbAM4VWIFKQNfzCZnuDOKA1qCYGSpurGoZgAKt9Knq9cCkBQ4DAhopNuT-dzbl-FmxLGNwxaD3cMBYy6h0r1XXihO8O8M6BZzHlF2A_DX-PSK-AfpZXuo</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Lee, Eunice S</creator><creator>Robinson, David</creator><creator>Rognlien, Judith L</creator><creator>Harnett, Cindy K</creator><creator>Simmons, Blake A</creator><creator>Bowe Ellis, C R</creator><creator>Davalos, Rafael V</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</title><author>Lee, Eunice S ; Robinson, David ; Rognlien, Judith L ; Harnett, Cindy K ; Simmons, Blake A ; Bowe Ellis, C R ; Davalos, Rafael V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Electroporation - instrumentation</topic><topic>Electroporation - methods</topic><topic>Lipids - chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eunice S</creatorcontrib><creatorcontrib>Robinson, David</creatorcontrib><creatorcontrib>Rognlien, Judith L</creatorcontrib><creatorcontrib>Harnett, Cindy K</creatorcontrib><creatorcontrib>Simmons, Blake A</creatorcontrib><creatorcontrib>Bowe Ellis, C R</creatorcontrib><creatorcontrib>Davalos, Rafael V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eunice S</au><au>Robinson, David</au><au>Rognlien, Judith L</au><au>Harnett, Cindy K</au><au>Simmons, Blake A</au><au>Bowe Ellis, C R</au><au>Davalos, Rafael V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2006-09</date><risdate>2006</risdate><volume>69</volume><issue>1</issue><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>1567-5394</issn><abstract>We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.</abstract><cop>Netherlands</cop><pmid>16483852</pmid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2006-09, Vol.69 (1), p.117-125
issn 1567-5394
language eng
recordid cdi_proquest_miscellaneous_68786403
source Elsevier
subjects Electroporation - instrumentation
Electroporation - methods
Lipids - chemistry
Microfluidics - instrumentation
Microfluidics - methods
Models, Theoretical
Particle Size
Time Factors
title Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electroporation%20of%20robust%2010-microm%20vesicles%20for%20manipulation%20of%20picoliter%20volumes&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Lee,%20Eunice%20S&rft.date=2006-09&rft.volume=69&rft.issue=1&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=1567-5394&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68786403%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p542-aa226af3e63a472be184cee9efce3d1e62cf601aa6a868e3d78915fa2a9eaec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68786403&rft_id=info:pmid/16483852&rfr_iscdi=true