Loading…

relationship between induction of embryogenesis and chromosome doubling in microspore cultures

The objective of this paper is to review the relationship between induction of microspore embryogenesis and chromosome doubling. It has been augmented with relative data on chromosome doubling by nuclear fusion. Some of the treatments used for induction of embryogenesis may also lead to doubling of...

Full description

Saved in:
Bibliographic Details
Published in:Protoplasma 2006-08, Vol.228 (1-3), p.79-86
Main Authors: Shim, Y. S, Kasha, K. J, Simion, E, Letarte, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is to review the relationship between induction of microspore embryogenesis and chromosome doubling. It has been augmented with relative data on chromosome doubling by nuclear fusion. Some of the treatments used for induction of embryogenesis may also lead to doubling of the chromosome number, either through nuclear fusion or endomitosis. High frequencies of spontaneous chromosome doubling in cereal species appear to be induced by treatments that block cell wall formation during the first cell divisions, resulting in coenocytic cells in which the nuclei are able to fuse. The use of mannitol as a pretreatment for induction of embryogenesis in barley, wheat, and maize microspore cultures provides examples of nuclear fusion. The use of antimicrotubule agents for embryo induction via treatments during the first few hours of microspore culture has also resulted in high frequencies of chromosome doubling. Factors such as the doubling agent concentration, temperature during treatment, and duration of treatment may be critical for individual species. Actin filament as well as microtubule assembly studies related to new cell wall formation provide further evidence at the molecular level for the relationship between microspore embryogenesis and chromosome doubling.
ISSN:0033-183X
1615-6102
DOI:10.1007/s00709-006-0177-z