Loading…
Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition....
Saved in:
Published in: | Biomaterials 2006-11, Vol.27 (33), p.5681-5688 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3 |
container_end_page | 5688 |
container_issue | 33 |
container_start_page | 5681 |
container_title | Biomaterials |
container_volume | 27 |
creator | Bashur, Chris A. Dahlgren, Linda A. Goldstein, Aaron S. |
description | Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly(
d,
l-lactic-
co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6
μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6
μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation. |
doi_str_mv | 10.1016/j.biomaterials.2006.07.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68795481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961206005977</els_id><sourcerecordid>29253614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</originalsourceid><addsrcrecordid>eNqNkduKFDEQhoMo7rj6ChK8EAW7raSTdLJ3sq4HWPBGr0M6h90M6c6Y9AjzEL6zWWdQ71YIhMD3V1XqQ-gFgZ4AEW-3_RTzbFZfokm1pwCih7EH4A_QhshRdlwBf4g2QBjtlCD0DD2pdQvtDYw-RmdEKMKIEhv08yoEb1ecAw5x8gW7aGbfSmOzOJxL9Mtq1pgX3E4jSp6SqSuec9nd5pRvDr_BXckpBl_-oD61qiXX3X7Bu5wOr7B7k7pk7Bpth23ubtLBtozFxkb3Gs--3vr6FD0K7Uv-2ek-R98-XH29_NRdf_n4-fLddWc5iLUjVElFiKSSDi6ogYGSnhI-BBEmMylgbHSDZSPwSToeBsEI0JGryVqwNgzn6OWxbpv7-97XVc-xWp-SWXzeVy3kqDiT5F6QKsoHQdi9IFFMyIHTBl4cQdu2U4sPelfibMpBE9B3evVW_6tX3-nVMOqmt4Wfn7rsp9m7v9GTzwa8PwK-be9H9EVX2xRa72JpQrTL8X_6_AJk2r60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19468352</pqid></control><display><type>article</type><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</creator><creatorcontrib>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</creatorcontrib><description>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly(
d,
l-lactic-
co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6
μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6
μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2006.07.005</identifier><identifier>PMID: 16914196</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Cell adhesion ; Cell Culture Techniques ; Cell morphology ; Cell Proliferation ; Cell Shape ; Electrospin ; Fibroblast ; Fibroblasts - cytology ; Fibroblasts - physiology ; Lactic Acid - chemistry ; Ligament ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; NIH 3T3 Cells ; Particle Size ; Polyglycolic Acid - chemistry ; Polymers - chemistry ; Tissue Engineering</subject><ispartof>Biomaterials, 2006-11, Vol.27 (33), p.5681-5688</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</citedby><cites>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16914196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashur, Chris A.</creatorcontrib><creatorcontrib>Dahlgren, Linda A.</creatorcontrib><creatorcontrib>Goldstein, Aaron S.</creatorcontrib><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly(
d,
l-lactic-
co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6
μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6
μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Cell adhesion</subject><subject>Cell Culture Techniques</subject><subject>Cell morphology</subject><subject>Cell Proliferation</subject><subject>Cell Shape</subject><subject>Electrospin</subject><subject>Fibroblast</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Lactic Acid - chemistry</subject><subject>Ligament</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>NIH 3T3 Cells</subject><subject>Particle Size</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymers - chemistry</subject><subject>Tissue Engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkduKFDEQhoMo7rj6ChK8EAW7raSTdLJ3sq4HWPBGr0M6h90M6c6Y9AjzEL6zWWdQ71YIhMD3V1XqQ-gFgZ4AEW-3_RTzbFZfokm1pwCih7EH4A_QhshRdlwBf4g2QBjtlCD0DD2pdQvtDYw-RmdEKMKIEhv08yoEb1ecAw5x8gW7aGbfSmOzOJxL9Mtq1pgX3E4jSp6SqSuec9nd5pRvDr_BXckpBl_-oD61qiXX3X7Bu5wOr7B7k7pk7Bpth23ubtLBtozFxkb3Gs--3vr6FD0K7Uv-2ek-R98-XH29_NRdf_n4-fLddWc5iLUjVElFiKSSDi6ogYGSnhI-BBEmMylgbHSDZSPwSToeBsEI0JGryVqwNgzn6OWxbpv7-97XVc-xWp-SWXzeVy3kqDiT5F6QKsoHQdi9IFFMyIHTBl4cQdu2U4sPelfibMpBE9B3evVW_6tX3-nVMOqmt4Wfn7rsp9m7v9GTzwa8PwK-be9H9EVX2xRa72JpQrTL8X_6_AJk2r60</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Bashur, Chris A.</creator><creator>Dahlgren, Linda A.</creator><creator>Goldstein, Aaron S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><author>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Cell adhesion</topic><topic>Cell Culture Techniques</topic><topic>Cell morphology</topic><topic>Cell Proliferation</topic><topic>Cell Shape</topic><topic>Electrospin</topic><topic>Fibroblast</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Lactic Acid - chemistry</topic><topic>Ligament</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>NIH 3T3 Cells</topic><topic>Particle Size</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymers - chemistry</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashur, Chris A.</creatorcontrib><creatorcontrib>Dahlgren, Linda A.</creatorcontrib><creatorcontrib>Goldstein, Aaron S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashur, Chris A.</au><au>Dahlgren, Linda A.</au><au>Goldstein, Aaron S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>27</volume><issue>33</issue><spage>5681</spage><epage>5688</epage><pages>5681-5688</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly(
d,
l-lactic-
co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6
μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6
μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16914196</pmid><doi>10.1016/j.biomaterials.2006.07.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2006-11, Vol.27 (33), p.5681-5688 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_68795481 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Animals Biocompatible Materials - metabolism Cell adhesion Cell Culture Techniques Cell morphology Cell Proliferation Cell Shape Electrospin Fibroblast Fibroblasts - cytology Fibroblasts - physiology Lactic Acid - chemistry Ligament Materials Testing Mice Microscopy, Electron, Scanning NIH 3T3 Cells Particle Size Polyglycolic Acid - chemistry Polymers - chemistry Tissue Engineering |
title | Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20fiber%20diameter%20and%20orientation%20on%20fibroblast%20morphology%20and%20proliferation%20on%20electrospun%20poly(%20d,l-lactic-%20co-glycolic%20acid)%20meshes&rft.jtitle=Biomaterials&rft.au=Bashur,%20Chris%20A.&rft.date=2006-11-01&rft.volume=27&rft.issue=33&rft.spage=5681&rft.epage=5688&rft.pages=5681-5688&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2006.07.005&rft_dat=%3Cproquest_cross%3E29253614%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19468352&rft_id=info:pmid/16914196&rfr_iscdi=true |