Loading…

Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes

Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition....

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2006-11, Vol.27 (33), p.5681-5688
Main Authors: Bashur, Chris A., Dahlgren, Linda A., Goldstein, Aaron S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3
cites cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3
container_end_page 5688
container_issue 33
container_start_page 5681
container_title Biomaterials
container_volume 27
creator Bashur, Chris A.
Dahlgren, Linda A.
Goldstein, Aaron S.
description Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly( d, l-lactic- co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6 μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
doi_str_mv 10.1016/j.biomaterials.2006.07.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68795481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961206005977</els_id><sourcerecordid>29253614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</originalsourceid><addsrcrecordid>eNqNkduKFDEQhoMo7rj6ChK8EAW7raSTdLJ3sq4HWPBGr0M6h90M6c6Y9AjzEL6zWWdQ71YIhMD3V1XqQ-gFgZ4AEW-3_RTzbFZfokm1pwCih7EH4A_QhshRdlwBf4g2QBjtlCD0DD2pdQvtDYw-RmdEKMKIEhv08yoEb1ecAw5x8gW7aGbfSmOzOJxL9Mtq1pgX3E4jSp6SqSuec9nd5pRvDr_BXckpBl_-oD61qiXX3X7Bu5wOr7B7k7pk7Bpth23ubtLBtozFxkb3Gs--3vr6FD0K7Uv-2ek-R98-XH29_NRdf_n4-fLddWc5iLUjVElFiKSSDi6ogYGSnhI-BBEmMylgbHSDZSPwSToeBsEI0JGryVqwNgzn6OWxbpv7-97XVc-xWp-SWXzeVy3kqDiT5F6QKsoHQdi9IFFMyIHTBl4cQdu2U4sPelfibMpBE9B3evVW_6tX3-nVMOqmt4Wfn7rsp9m7v9GTzwa8PwK-be9H9EVX2xRa72JpQrTL8X_6_AJk2r60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19468352</pqid></control><display><type>article</type><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</creator><creatorcontrib>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</creatorcontrib><description>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly( d, l-lactic- co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6 μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2006.07.005</identifier><identifier>PMID: 16914196</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Cell adhesion ; Cell Culture Techniques ; Cell morphology ; Cell Proliferation ; Cell Shape ; Electrospin ; Fibroblast ; Fibroblasts - cytology ; Fibroblasts - physiology ; Lactic Acid - chemistry ; Ligament ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; NIH 3T3 Cells ; Particle Size ; Polyglycolic Acid - chemistry ; Polymers - chemistry ; Tissue Engineering</subject><ispartof>Biomaterials, 2006-11, Vol.27 (33), p.5681-5688</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</citedby><cites>FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16914196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashur, Chris A.</creatorcontrib><creatorcontrib>Dahlgren, Linda A.</creatorcontrib><creatorcontrib>Goldstein, Aaron S.</creatorcontrib><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly( d, l-lactic- co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6 μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Cell adhesion</subject><subject>Cell Culture Techniques</subject><subject>Cell morphology</subject><subject>Cell Proliferation</subject><subject>Cell Shape</subject><subject>Electrospin</subject><subject>Fibroblast</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Lactic Acid - chemistry</subject><subject>Ligament</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>NIH 3T3 Cells</subject><subject>Particle Size</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymers - chemistry</subject><subject>Tissue Engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkduKFDEQhoMo7rj6ChK8EAW7raSTdLJ3sq4HWPBGr0M6h90M6c6Y9AjzEL6zWWdQ71YIhMD3V1XqQ-gFgZ4AEW-3_RTzbFZfokm1pwCih7EH4A_QhshRdlwBf4g2QBjtlCD0DD2pdQvtDYw-RmdEKMKIEhv08yoEb1ecAw5x8gW7aGbfSmOzOJxL9Mtq1pgX3E4jSp6SqSuec9nd5pRvDr_BXckpBl_-oD61qiXX3X7Bu5wOr7B7k7pk7Bpth23ubtLBtozFxkb3Gs--3vr6FD0K7Uv-2ek-R98-XH29_NRdf_n4-fLddWc5iLUjVElFiKSSDi6ogYGSnhI-BBEmMylgbHSDZSPwSToeBsEI0JGryVqwNgzn6OWxbpv7-97XVc-xWp-SWXzeVy3kqDiT5F6QKsoHQdi9IFFMyIHTBl4cQdu2U4sPelfibMpBE9B3evVW_6tX3-nVMOqmt4Wfn7rsp9m7v9GTzwa8PwK-be9H9EVX2xRa72JpQrTL8X_6_AJk2r60</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Bashur, Chris A.</creator><creator>Dahlgren, Linda A.</creator><creator>Goldstein, Aaron S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</title><author>Bashur, Chris A. ; Dahlgren, Linda A. ; Goldstein, Aaron S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Cell adhesion</topic><topic>Cell Culture Techniques</topic><topic>Cell morphology</topic><topic>Cell Proliferation</topic><topic>Cell Shape</topic><topic>Electrospin</topic><topic>Fibroblast</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Lactic Acid - chemistry</topic><topic>Ligament</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>NIH 3T3 Cells</topic><topic>Particle Size</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymers - chemistry</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashur, Chris A.</creatorcontrib><creatorcontrib>Dahlgren, Linda A.</creatorcontrib><creatorcontrib>Goldstein, Aaron S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashur, Chris A.</au><au>Dahlgren, Linda A.</au><au>Goldstein, Aaron S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>27</volume><issue>33</issue><spage>5681</spage><epage>5688</epage><pages>5681-5688</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes—formed by the electrospinning process—can regulate cell morphology. To test this, fused fiber meshes of poly( d, l-lactic- co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14–3.6 μm, and angular standard deviations of 31–60°. Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 μm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16914196</pmid><doi>10.1016/j.biomaterials.2006.07.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2006-11, Vol.27 (33), p.5681-5688
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_68795481
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Biocompatible Materials - metabolism
Cell adhesion
Cell Culture Techniques
Cell morphology
Cell Proliferation
Cell Shape
Electrospin
Fibroblast
Fibroblasts - cytology
Fibroblasts - physiology
Lactic Acid - chemistry
Ligament
Materials Testing
Mice
Microscopy, Electron, Scanning
NIH 3T3 Cells
Particle Size
Polyglycolic Acid - chemistry
Polymers - chemistry
Tissue Engineering
title Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly( d,l-lactic- co-glycolic acid) meshes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20fiber%20diameter%20and%20orientation%20on%20fibroblast%20morphology%20and%20proliferation%20on%20electrospun%20poly(%20d,l-lactic-%20co-glycolic%20acid)%20meshes&rft.jtitle=Biomaterials&rft.au=Bashur,%20Chris%20A.&rft.date=2006-11-01&rft.volume=27&rft.issue=33&rft.spage=5681&rft.epage=5688&rft.pages=5681-5688&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2006.07.005&rft_dat=%3Cproquest_cross%3E29253614%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-129891182823df934098e2153f6fbab90447d3c4705b8d5f364102759bcc0ccf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19468352&rft_id=info:pmid/16914196&rfr_iscdi=true