Loading…

The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes

In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystall...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-11, Vol.123 (18), p.184708-184708-11
Main Authors: Snyder, M. A., Vlachos, D. G.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3
cites cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3
container_end_page 184708-11
container_issue 18
container_start_page 184708
container_title The Journal of chemical physics
container_volume 123
creator Snyder, M. A.
Vlachos, D. G.
description In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous Na X membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through Na X membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.
doi_str_mv 10.1063/1.2107415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68810008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68810008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</originalsourceid><addsrcrecordid>eNp1kctOxCAYhYnR6HhZ-AKGlYmLKpROoS5MjPGWmOhC1wToj4OhZYR2Mc_gS8s4Na4Mi5_Lx8nJOQgdU3JOSc0u6HlJCa_ofAvNKBFNweuGbKMZISUtmprUe2g_pQ9CCOVltYv2aF02eZUz9PW6AByDBxws7vI0o1cRu36AqMzgQp-w6tvNhVUGUt7i1lk7pvx4iV8gdqDWIB4WMYzvC5xc_-6hMHGVBuV_vi-DX01n73rAnTMxLEPmE-6g01H1kA7RjlU-wdE0D9Db3e3rzUPx9Hz_eHP9VBjGxFCUlao1byoQCpjmgljbcKpZUypheC2MgpJoylmrreZs3rI5MVpXtGKVBbDsAJ1udJcxfI6QBtm5ZMD7bCIbkrUQNGclMni2AbPZlCJYuYyuU3ElKZHr5CWVU_KZPZlER91B-0dOUWfgagMk44afwP5Xy6XIdSkyWPlbCvsGQvCXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68810008</pqid></control><display><type>article</type><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Snyder, M. A. ; Vlachos, D. G.</creator><creatorcontrib>Snyder, M. A. ; Vlachos, D. G.</creatorcontrib><description>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous Na X membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through Na X membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2107415</identifier><identifier>PMID: 16292922</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2005-11, Vol.123 (18), p.184708-184708-11</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</citedby><cites>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,795,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16292922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, M. A.</creatorcontrib><creatorcontrib>Vlachos, D. G.</creatorcontrib><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous Na X membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through Na X membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kctOxCAYhYnR6HhZ-AKGlYmLKpROoS5MjPGWmOhC1wToj4OhZYR2Mc_gS8s4Na4Mi5_Lx8nJOQgdU3JOSc0u6HlJCa_ofAvNKBFNweuGbKMZISUtmprUe2g_pQ9CCOVltYv2aF02eZUz9PW6AByDBxws7vI0o1cRu36AqMzgQp-w6tvNhVUGUt7i1lk7pvx4iV8gdqDWIB4WMYzvC5xc_-6hMHGVBuV_vi-DX01n73rAnTMxLEPmE-6g01H1kA7RjlU-wdE0D9Db3e3rzUPx9Hz_eHP9VBjGxFCUlao1byoQCpjmgljbcKpZUypheC2MgpJoylmrreZs3rI5MVpXtGKVBbDsAJ1udJcxfI6QBtm5ZMD7bCIbkrUQNGclMni2AbPZlCJYuYyuU3ElKZHr5CWVU_KZPZlER91B-0dOUWfgagMk44afwP5Xy6XIdSkyWPlbCvsGQvCXhA</recordid><startdate>20051108</startdate><enddate>20051108</enddate><creator>Snyder, M. A.</creator><creator>Vlachos, D. G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051108</creationdate><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><author>Snyder, M. A. ; Vlachos, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, M. A.</creatorcontrib><creatorcontrib>Vlachos, D. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, M. A.</au><au>Vlachos, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-11-08</date><risdate>2005</risdate><volume>123</volume><issue>18</issue><spage>184708</spage><epage>184708-11</epage><pages>184708-184708-11</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous Na X membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through Na X membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16292922</pmid><doi>10.1063/1.2107415</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-11, Vol.123 (18), p.184708-184708-11
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_68810008
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
title The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20molecular%20interactions%20and%20interfaces%20in%20diffusion:%20Permeation%20through%20single-crystal%20and%20polycrystalline%20microporous%20membranes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Snyder,%20M.%20A.&rft.date=2005-11-08&rft.volume=123&rft.issue=18&rft.spage=184708&rft.epage=184708-11&rft.pages=184708-184708-11&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2107415&rft_dat=%3Cproquest_cross%3E68810008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68810008&rft_id=info:pmid/16292922&rfr_iscdi=true