Loading…
The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes
In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystall...
Saved in:
Published in: | The Journal of chemical physics 2005-11, Vol.123 (18), p.184708-184708-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3 |
container_end_page | 184708-11 |
container_issue | 18 |
container_start_page | 184708 |
container_title | The Journal of chemical physics |
container_volume | 123 |
creator | Snyder, M. A. Vlachos, D. G. |
description | In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous
Na
X
membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through
Na
X
membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity. |
doi_str_mv | 10.1063/1.2107415 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68810008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68810008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</originalsourceid><addsrcrecordid>eNp1kctOxCAYhYnR6HhZ-AKGlYmLKpROoS5MjPGWmOhC1wToj4OhZYR2Mc_gS8s4Na4Mi5_Lx8nJOQgdU3JOSc0u6HlJCa_ofAvNKBFNweuGbKMZISUtmprUe2g_pQ9CCOVltYv2aF02eZUz9PW6AByDBxws7vI0o1cRu36AqMzgQp-w6tvNhVUGUt7i1lk7pvx4iV8gdqDWIB4WMYzvC5xc_-6hMHGVBuV_vi-DX01n73rAnTMxLEPmE-6g01H1kA7RjlU-wdE0D9Db3e3rzUPx9Hz_eHP9VBjGxFCUlao1byoQCpjmgljbcKpZUypheC2MgpJoylmrreZs3rI5MVpXtGKVBbDsAJ1udJcxfI6QBtm5ZMD7bCIbkrUQNGclMni2AbPZlCJYuYyuU3ElKZHr5CWVU_KZPZlER91B-0dOUWfgagMk44afwP5Xy6XIdSkyWPlbCvsGQvCXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68810008</pqid></control><display><type>article</type><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Snyder, M. A. ; Vlachos, D. G.</creator><creatorcontrib>Snyder, M. A. ; Vlachos, D. G.</creatorcontrib><description>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous
Na
X
membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through
Na
X
membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2107415</identifier><identifier>PMID: 16292922</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2005-11, Vol.123 (18), p.184708-184708-11</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</citedby><cites>FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,795,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16292922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, M. A.</creatorcontrib><creatorcontrib>Vlachos, D. G.</creatorcontrib><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous
Na
X
membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through
Na
X
membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kctOxCAYhYnR6HhZ-AKGlYmLKpROoS5MjPGWmOhC1wToj4OhZYR2Mc_gS8s4Na4Mi5_Lx8nJOQgdU3JOSc0u6HlJCa_ofAvNKBFNweuGbKMZISUtmprUe2g_pQ9CCOVltYv2aF02eZUz9PW6AByDBxws7vI0o1cRu36AqMzgQp-w6tvNhVUGUt7i1lk7pvx4iV8gdqDWIB4WMYzvC5xc_-6hMHGVBuV_vi-DX01n73rAnTMxLEPmE-6g01H1kA7RjlU-wdE0D9Db3e3rzUPx9Hz_eHP9VBjGxFCUlao1byoQCpjmgljbcKpZUypheC2MgpJoylmrreZs3rI5MVpXtGKVBbDsAJ1udJcxfI6QBtm5ZMD7bCIbkrUQNGclMni2AbPZlCJYuYyuU3ElKZHr5CWVU_KZPZlER91B-0dOUWfgagMk44afwP5Xy6XIdSkyWPlbCvsGQvCXhA</recordid><startdate>20051108</startdate><enddate>20051108</enddate><creator>Snyder, M. A.</creator><creator>Vlachos, D. G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051108</creationdate><title>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</title><author>Snyder, M. A. ; Vlachos, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, M. A.</creatorcontrib><creatorcontrib>Vlachos, D. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, M. A.</au><au>Vlachos, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-11-08</date><risdate>2005</risdate><volume>123</volume><issue>18</issue><spage>184708</spage><epage>184708-11</epage><pages>184708-184708-11</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In this second paper of a two part series, we investigate the implications of the interfacial phenomenon, caused by adsorbate-adsorbate interactions coupled with the difference in adsorbate density between the zeolite and the gas phase, upon benzene permeation through single-crystal and polycrystalline microporous
Na
X
membranes. The high flux predicted for thin single-crystal membranes reveals that substantially enhanced flux should be expected in submicron films. Simulations also indicate that the standard local equilibrium assumption made for larger scale membranes is inapplicable at the submicron scale associated with nanometer size grains of thin and/or polycrystalline membranes. Apparent activation energies predicted for benzene permeation through
Na
X
membranes via kinetic Monte Carlo (KMC) simulations are in good agreement with laboratory experiments. The simulations also uncover temperature-dependent flux pathways leading to non-Arrhenius behavior observed experimentally. The failure of the Darken approximation, especially in the presence of the interfacial phenomenon, leads to a substantial overprediction of the flux. Simulations of polycrystalline membranes suggest that this same interfacial phenomenon leads to resistance that can reduce flux by an order of a magnitude with only moderate polycrystallinity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16292922</pmid><doi>10.1063/1.2107415</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2005-11, Vol.123 (18), p.184708-184708-11 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_68810008 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
title | The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20molecular%20interactions%20and%20interfaces%20in%20diffusion:%20Permeation%20through%20single-crystal%20and%20polycrystalline%20microporous%20membranes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Snyder,%20M.%20A.&rft.date=2005-11-08&rft.volume=123&rft.issue=18&rft.spage=184708&rft.epage=184708-11&rft.pages=184708-184708-11&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2107415&rft_dat=%3Cproquest_cross%3E68810008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-24a6b794e8ae3b780ff971b392a8c768cae20b173dbfb735d350cbb41434feef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68810008&rft_id=info:pmid/16292922&rfr_iscdi=true |