Loading…

Human White Blood Cells Synthesize Morphine: CYP2D6 Modulation

Human plasma contains low, but physiologically significant, concentrations of morphine that can increase following trauma or exercise. We now demonstrate that normal, human white blood cells (WBC), specifically polymorphonuclear cells, contain and have the ability to synthesize morphine. We also sho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Immunology 2005-12, Vol.175 (11), p.7357-7362
Main Authors: Zhu, Wei, Cadet, Patrick, Baggerman, Geert, Mantione, Kirk J, Stefano, George B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human plasma contains low, but physiologically significant, concentrations of morphine that can increase following trauma or exercise. We now demonstrate that normal, human white blood cells (WBC), specifically polymorphonuclear cells, contain and have the ability to synthesize morphine. We also show that WBC express CYP2D6, an enzyme capable of synthesizing morphine from tyramine, norlaudanosoline, and codeine. Significantly, we also show that morphine can be synthesized by another pathway via l-3,4-dihydroxyphenylalanine (L-DOPA). Finally, we show that WBC release morphine into their environment. These studies provide evidence that 1) the synthesis of morphine by various animal tissues is more widespread than previously thought and now includes human immune cells. 2) Moreover, another pathway for morphine synthesis exists, via L-DOPA, demonstrating an intersection between dopamine and morphine pathways. 3) WBC can release morphine into the environment to regulate themselves and other cells, suggesting involvement in autocrine signaling since these cells express the mu3 opiate receptor subtype.
ISSN:0022-1767
1550-6606
1365-2567
DOI:10.4049/jimmunol.175.11.7357